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Abstract

In the 60s and 70s the software engineering offensive emerged from long-standing prob-
lems in software development, which are captured by the term software crisis. Though
there has been significant progress since then, the current situation is far from satisfac-
tory. According to the recent report of the Standish Group, still only 34% of all software
projects succeed.

Since the early days, two fundamental principles drive software engineering research to
cope with the software crisis: separation of concerns and modularity. Building software
according to these principles is supposed to improve its understandability, maintainabil-
ity, reusability, and customizability. But it turned out that providing adequate concepts,
methods, formalisms, and tools is difficult.

This dissertation aspires to contribute to this field. Specifically, we target the two novel
programming paradigms feature-oriented programming (FOP) and aspect-oriented pro-
gramming (AOP) that have been discussed intensively in the literature. Both paradigms
focus on a specific class of design and implementation problems, which are called cross-
cutting concerns. A crosscutting concern is a single design decision or issue whose imple-
mentation typically is scattered throughout the modules of a software system. Hence,
crosscutting concerns contradict and violate the principles of separation of concerns and
modularity.

Though FOP and AOP provide method-level, language-level, and tool-supported means
to deal with crosscutting concerns, they do so in different ways. In this dissertation we
demonstrate that FOP and AOP are not competing approaches but that their combi-
nation can overcome their individual limitations. We underpin this insight by a clas-
sification of crosscutting concerns and an evaluation of FOP and AOP with respect to
different classes of crosscutting concerns. The result is a set of programming guidelines
in form of a catalog that contrasts the strengths and weaknesses of FOP and AOP.

In order to profit from their individual strengths, we propose the symbiosis of FOP
and AOP. To this end, we present aspectual feature modules (AFMs) that realize the
symbiosis by the integration of concepts, design rationales, languages constructs, and
tools for FOP and AOP. An evaluation and comparison with traditional FOP and AOP
corroborates that AFMs largely profit from either’s strengths.
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Furthermore, we emphasize that current AOP languages are not suited to be combined
with the stepwise development style of FOP. Consequently, we introduce the notion of
aspect refinement (AR) that unifies AOP and stepwise software development and that
is underpinned by a set of accompanying language constructs and tools.

A non-trivial case study demonstrates the practical applicability of AFMs and AR to a
medium-sized software project. This study reveals a further fundamental issue: Given
the programming guidelines, how are mechanisms related to AOP and FOP used in con-
temporary programs? The background is that a specific class of crosscutting concerns,
called collaborations, is connected naturally with FOP. Due to the missing support in
main stream programming languages today, AOP has frequently been used to implement
collaborations.

However, with the advent of languages that support collaborations and the classification
and evaluation contributed by this dissertation, we ask: What fraction of aspect-oriented
code implements collaborations? What fraction implements crosscutting concerns be-
yond collaborations? A quantitative analysis of 8 AspectJ programs of different size
reveals that on average 98% of the code base is associated with collaborations and only
2% exploits the advanced capabilities of AOP. Furthermore, we observed that the impact
of AOP decreases as the program size increases.

Finally, the dissertation discusses why this (dis)proportion of code related to AOP and
FOP is not surprising and whether and how the impact of AOP can be increased.
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Zusammenfassung

Der Begriff Softwaretechnik und die damit verbundene Offensive erwuchs in den 60ern
und 70ern aus den anhaltenden Problemen bei der Entwicklung von Software, welche
unter dem Begriff Softwarekrise zusammengefasst werden. Obwohl sich seitdem einiges
bewegt hat, ist die derzeitige Situation in der Softwareentwicklung alles andere als
zufrieden stellend. Laut dem aktuellen Bericht der Standish Group werden nur 34%
aller Softwareprojekte erfolgreich zum Abschluss gebracht.

Seit dem werden zwei Prinzipien eng mit der Überwindung der Softwarekrise in Verbin-
dung gebracht: Trennung von Belangen (separation of concerns) und Modularität (mo-
dularity). Finden diese Prinzipien in der Entwicklung von Software Beachtung, lässt
sich die Verständlichkeit, Wartbarkeit, Wiederverwendbarkeit und Maßschneiderbarkeit
von Software signifikant verbessern. Allerdings stellte sich schnell heraus, dass es weit
komplizierter ist, adäquate Konzepte, Methoden, Formalismen und Werkzeuge zu ent-
wickeln, als zunächst angenommen.

Diese Dissertation hat zum Ziel, zu diesem Bereich der Forschung beizutragen. Im
Speziellen beschäftigt sich die Arbeit mit zwei derzeitig diskutierten Programmierparadig-
men, der Feature-orientierten Programmierung (FOP) und der Aspekt-orientierten Pro-
grammierung (AOP). Beide Paradigmen konzentrieren sich auf eine bestimmte Klasse
von Entwurfs- und Implementierungsproblemen, die so genannten querschneidenden
Belange (crosscutting concerns). Ein querschneidender Belang entspricht einer einzel-
nen Entwurfs- oder Implementierungsentscheidung bzw. einer Fragestellung oder eines
Ansinnens, dessen Implementierung typischerweise über weite Teile eines Softwaresys-
tems verstreut ist. Aus diesem Grund widersprechen querschneidene Belange den Prin-
zipien der Trennung von Belangen und der Modularität.

FOP und AOP stellen beide methodische und programmiersprachliche Mittel und Werk-
zeuge bereit, gehen das Problem der querschneidenden Belange aber auf sehr unter-
schiedliche Weise an. In dieser Dissertation wird jedoch festgestellt, dass FOP und AOP
keine konkurrierenden Ansätze sind, sondern dass ihre Kombination die individuellen
Schwächen überwinden kann. Diese Einsicht wird untermauert durch eine Klassifikation
von querschneidenden Belangen und eine Evaluierung von FOP und AOP hinsichtlich
der verschiedenen Klassen querschneidender Belange. Ergebnis ist ein Satz von Pro-
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grammierrichtlinien in Form eines Katalogs, der die Stärken und Schwächen von FOP
und AOP gegenüberstellt.

Um von den individuellen Stärken beider Paradigmen zu profitieren, wird in dieser Dis-
sertation die Symbiose von FOP und AOP vorgeschlagen. Insbesondere präsentieren
wir den Ansatz der Aspekt-basierten Featuremodule (aspectual feature modules – AFMs),
welche die Symbiose umsetzen, indem sie die Entwurfsphilosophien, Sprachmechanismen
und Werkzeuge von FOP und AOP kombinieren. Eine Evaluierung und eine Gegenüber-
stellung mit traditioneller FOP und AOP demonstrieren die Überlegenheit von AFMs.

Des Weiteren wird in der Dissertation herausgestellt, dass derzeitige AOP-Sprachen
nicht uneingeschränkt geeignet sind, in die schrittweise Entwurfsphilosophie von FOP
integriert zu werden. Konsequenterweise wird der Ansatz der Aspektverfeinerung (aspect
refinement – AR) vorgestellt, welcher AOP und schrittweise Softwareentwicklung à la
FOP vereinheitlicht. Weiterhin werden entsprechende Sprachkonstrukte und Werkzeuge
zur Verfügung gestellt.

Mittels einer nicht-trivialen Fallstudie wird die praktische Anwendbarkeit von AFMs
und AR auf ein mittelgroßes Softwareprojekt demonstriert. Die Studie wirft weiterhin
eine fundamentale Frage auf: Wie werden Mechanismen von FOP und AOP heutzutage
verwendet. Hintergrund ist, dass eine spezielle Klasse von querschneidenden Belangen
eng mit FOP verknüpft ist, die so genannten Kollaborationen (collaborations). Durch
die fehlende Unterstützung von Kollaborationen in aktuellen Programmiersprachen wird
dafür heute oft AOP benutzt.

Durch das Aufkommen von Programmiersprachen, die Kollaborationen explizit unter-
stützen, sowie durch die in dieser Dissertation präsentierte Klassifikation und Evaluie-
rung, stellen sich jedoch folgende Fragen: Welcher Anteil von Aspektcode implementiert
Kollaborationen? Welcher Anteil implementiert querschneidene Belange, die darüber
hinaus AOP benötigen? Eine quantitative Analyse von 8 AspectJ-Programmen unter-
schiedlicher Größe ergibt, dass durchschnittlich 98% der Codebasis der analysierten Pro-
gramme mit Kollaborationen verknüpft sind und nur 2% die erweiterten Mittel von AOP
jenseits von Kollaborationen ausnutzen. Weiterhin wird beobachtet, dass mit steigender
Programmgröße der Einfluss von AOP sinkt.

In der Dissertation wird die Frage beantwortet, warum dieses (Miss)Verhältnis zwi-
schen AOP und FOP-Code besteht, und warum dies nicht überrascht. Weiterhin wird
diskutiert, ob und wie der positive Einfluss von AOP gesteigert werden kann.

iv



Acknowledgements

Pursuing a Ph.D. is an endeavor that is not only steeped in sudden inspiration and pure
scientific beauty, but is often a path with many obstacles, difficulties, and throwbacks.
However, I was able to make my way because many people accompanied and supported
me. First, I want to thank Susi my partner and wife-to-be for her encouragement,
love, and “mental support” in good and bad times. I am also grateful to my parents
who supported me, my dreams, ideas, and plans from the very beginning of my life.
Furthermore, I want to acknowledge my brother, my grandparents, my grandaunt, my
mother-in-law-to-be, and Ayla (a.k.a. “The Queen of Saba”) who all helped and believed
in me, in one or the other way.

In my life I had many teachers, mentors, and professors – too many to mention here.
Certainly, my advisers played an important role in my dissertation. It is worth noting
that I had not just one adviser, but two advisers who supported me in different ways.

First, Don Batory helped me understand the “big picture” of my work, and helped me
refine my style in scientific thinking, working, and writing. In my time at the University
of Texas at Austin we had many long and emotional discussions about fundamental
issues of my research and philosophical issues of science. It was an honor and a true
pleasure working with him. His support, patience, encouragement, and advice has gone
further than I would have imagined and expected.

Second, I want to thank my adviser Gunter Saake who called me in his group at the
University of Magdeburg and gave me the opportunity for doing my Ph.D. in the first
place. In the face of numerous organizational, operational, and financial problems, he
always came up with an unconventional and practical solution that ensured my freedom
of research and scientific work. He always believed in my abilities and supported me
without asking. I learned many invaluable truths from him about the amenities and
dangers of the world of research, science, and academics.

As a further mentor I want to thank Christian Lengauer. I first met him at the University
of Texas at Austin. We quickly realized that despite our largely different views of the
world of software engineering and programming, we were able to work in harmony.
I profited always from our controversial discussions that emerged from our different

v



perspectives and backgrounds. This raised my awareness of the importance of formal
foundations and precise definitions.

During the years of my Ph.D. studies I worked and discussed with many other researchers
that contributed to the evolution of my thinking and understanding of many problems in
computer science. The most influential persons were Erik Buchmann, Klemens Böhm,
Thomas Leich, Roberto Lopez-Herrejon, Olaf Spinczyk, DeLesley Hutchins, Klaus Os-
termann, Sahil Thaker, Walter Cazzola, and Jia Liu.

A special thank-you goes to the members of the Metop research institute that supported
me financially and organizationally over long times. Particularly, I want to mention
Thomas Leich and Marco Plack that granted support in many situations.

Furthermore, I want to thank several students and colleagues that were involved in
many activities related to this dissertation: Christian Kästner, Marko Rosenmüller,
Martin Kuhlemann, Helge Sichting, Holger Steinhaus, Laura Marnitz, and Karl-Heinz
Deutinger.

Finally, I want to thank all members of the Database Group at the University of Magde-
burg and the Product-Line Architecture Research Group at the University of Texas at
Austin, as well as all my relatives and friends.

vi



Contents

List of Figures xi

List of Tables xv

Abbreviations xvii

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Separation of Concerns and Modularity 7

2.1 Separation of Concerns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Stepwise Software Development . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Stepwise Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Program Family Development . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Stepwise Refinement Versus Program Families . . . . . . . . . . . . 11
2.2.4 Software Product Lines . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Feature-Oriented Programming . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Features, Concerns, and Collaborations . . . . . . . . . . . . . . . . 15
2.4.2 Jak: FOP for Java . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.3 GenVoca . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.4 AHEAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Aspect-Oriented Programming . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.1 Crosscutting Concerns . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.2 Aspects: An Alternative Modularization Mechanism . . . . . . . . . 23
2.5.3 AspectJ: AOP for Java . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Terminology Used in this Dissertation . . . . . . . . . . . . . . . . . . . 26

vii



Contents

3 A Classification Framework for Crosscutting Concerns 29

3.1 Homogeneous and Heterogeneous Crosscutting Concerns . . . . . . . . . 29
3.2 Static and Dynamic Crosscutting Concerns . . . . . . . . . . . . . . . . . 31
3.3 Summary: Classification Matrix . . . . . . . . . . . . . . . . . . . . . . . 33

4 A Conceptual Evaluation of AOP and FOP 35

4.1 Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.1 Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.2 Crosscutting Modularity . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.3 Feature Cohesion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.4 Feature Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.5 Feature Composition . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Evaluation of AOP and FOP . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.1 Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.2 Crosscutting Modularity . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.3 Feature Cohesion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.4 Feature Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.5 Feature Composition . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Summary, Perspective, and Goals . . . . . . . . . . . . . . . . . . . . . . 47

5 The Symbiosis of Feature Modules and Aspects 49

5.1 Design Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 The Integration of Feature Modules and Aspects . . . . . . . . . . . . . 50
5.3 Aspectual Feature Modules . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.4 A Conceptual Evaluation of Aspectual Feature Modules . . . . . . . . . 55

5.4.1 Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.4.2 Crosscutting Modularity . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4.3 Feature Cohesion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.4.4 Feature Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.4.5 Feature Composition . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.5 Tool Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.5.1 FeatureC++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.5.2 AHEAD Tool Suite & AspectJ . . . . . . . . . . . . . . . . . . . . . 59
5.5.3 FeatureIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Aligning Aspects and Stepwise Development 67

6.1 Aspects and Stepwise Software Development . . . . . . . . . . . . . . . . 67
6.1.1 An Example of Aspect Refinement . . . . . . . . . . . . . . . . . . 68
6.1.2 Limited Language-Level Support for Aspect Refinement . . . . . . 70

viii



Contents

6.2 Mixin-Based Aspect Inheritance . . . . . . . . . . . . . . . . . . . . . . . 71
6.2.1 Adding Members and Extending Methods. . . . . . . . . . . . . . . 72
6.2.2 Pointcut Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2.3 Advice Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.3 Tool Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3.1 ARJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3.2 FeatureC++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7 Case Study: A Product Line for P2P Overlays 85

7.1 Overview of P2P-PL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.1.1 Aspectual Feature Modules in P2P-PL . . . . . . . . . . . . . . . . 87
7.1.2 Aspect Refinement in P2P-PL . . . . . . . . . . . . . . . . . . . . . 90

7.2 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.2.1 Statistics on Used AOP and FOP Mechanisms . . . . . . . . . . . . 93
7.2.2 Statistics on AFMs with Aspects . . . . . . . . . . . . . . . . . . . 95
7.2.3 Statistics on Aspect Refinement . . . . . . . . . . . . . . . . . . . . 95

7.3 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.3.1 Refinements and Aspects – When to Use What? . . . . . . . . . . . 96
7.3.2 Borderline Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.3.3 Benefits of Aspect Refinement . . . . . . . . . . . . . . . . . . . . . 98

7.4 Open Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8 Aspects Versus Collaborations 103

8.1 Problem Statement: Aspects vs. Collaborations . . . . . . . . . . . . . . 103
8.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.2.1 Analyzing AspectJ Programs . . . . . . . . . . . . . . . . . . . . . 106
8.2.2 AJStats: A Statistics Collector for AspectJ Programs . . . . . . . . 106

8.3 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.3.1 Overview of the Analyzed AspectJ Programs . . . . . . . . . . . . . 107

8.4 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
8.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.7 Summary and Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . 118

ix



Contents

9 Concluding Remarks and Further Work 121

9.1 Summary of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . 121
9.2 Contributions and Perspective . . . . . . . . . . . . . . . . . . . . . . . . 123
9.3 Suggestions for Further Work . . . . . . . . . . . . . . . . . . . . . . . . 124

Bibliography 127

Curriculum Vitae 147

x



List of Figures

2.1 Implementing two design decisions by applying two refinements [Bax92] . 11
2.2 A program family of operating systems [HFC76]. . . . . . . . . . . . . . 12
2.3 Collaboration-based design. . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Collaboration-based design of a graph implementation. . . . . . . . . . . 16
2.5 A simple graph implementation (BasicGraph). . . . . . . . . . . . . . . . 17
2.6 Adding support for weighted graphs (Weight). . . . . . . . . . . . . . . . 18
2.7 Directory structure of a graph implementation. . . . . . . . . . . . . . . 19
2.8 Combining the containment hierarchies of two features. . . . . . . . . . . 21
2.9 Dimensions of separation of concerns. . . . . . . . . . . . . . . . . . . . . 22
2.10 OOP implementation of the feature Color. . . . . . . . . . . . . . . . . . 23
2.11 Aspect weaving. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.12 Implementing the Color feature as aspect. . . . . . . . . . . . . . . . . . 25
2.13 Implementing the Color feature using AspectJ (excerpt). . . . . . . . . . 26
2.14 A more compact syntax for inter-type declarations in AspectJ. . . . . . . 26

3.1 Homogeneous and heterogeneous crosscuts. . . . . . . . . . . . . . . . . . 30
3.2 A homogeneous crosscut implemented using one piece of advice. . . . . . 30
3.3 A homogeneous crosscut implemented using three pieces of advice. . . . . 30
3.4 Implementing static crosscuts in Jak (left) and AspectJ (right). . . . . . 31
3.5 Implementing dynamic crosscuts in Jak (left) and AspectJ (right). . . . . 31
3.6 Static and dynamic crosscuts. . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Integrating features by superimposition. . . . . . . . . . . . . . . . . . . 37
4.2 Crosscutting integration of features. . . . . . . . . . . . . . . . . . . . . . 38
4.3 Implementing the Color feature as a feature module. . . . . . . . . . . . 40
4.4 Implementing the Color feature as an aspect. . . . . . . . . . . . . . . . 41
4.5 Implementing a collaboration as an aspect. . . . . . . . . . . . . . . . . . 41
4.6 An AspectJ aspect that implements a collaboration. . . . . . . . . . . . . 42
4.7 Implementing a large-scale feature using a feature module. . . . . . . . . 42
4.8 Implementing a large-scale feature using an aspect. . . . . . . . . . . . . 43
4.9 Implementing a static crosscut via refinement (left) and via aspect (right). 43

xi



List of Figures

4.10 A recursive graph data structure. . . . . . . . . . . . . . . . . . . . . . . 44
4.11 Advising the printing mechanism using advanced advice. . . . . . . . . . 45
4.12 Implementing the extended printing mechanism via refinement. . . . . . 45

5.1 Feature-driven decomposition of an object-oriented design. . . . . . . . . 51
5.2 Feature-driven decomposition of an aspect-oriented design. . . . . . . . . 51
5.3 Aspectual feature modules. . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.4 Implementing the feature Color as an aspectual feature module. . . . . . 53
5.5 Superimposing containment hierarchies including aspects. . . . . . . . . . 54
5.6 Jampack-composed graph implementation. . . . . . . . . . . . . . . . . . 54
5.7 Mixin-composed graph implementation. . . . . . . . . . . . . . . . . . . 55
5.8 A FeatureC++ code example. . . . . . . . . . . . . . . . . . . . . . . . . 58
5.9 FeatureC++ compilation process. . . . . . . . . . . . . . . . . . . . . . . 59
5.10 Feature modeling in FeatureIDE. . . . . . . . . . . . . . . . . . . . . . . 61
5.11 A stack of feature modules in FeatureIDE. . . . . . . . . . . . . . . . . . 61
5.12 Implementing functional aspects via pointcut restructuring. . . . . . . . 65

6.1 Four steps in the evolution of a program using AFMs. . . . . . . . . . . . 69
6.2 Adding members and extending methods via AR. . . . . . . . . . . . . . 72
6.3 AR composition and weaving semantics. . . . . . . . . . . . . . . . . . . 73
6.4 Altering the set of locked methods via pointcut refinement. . . . . . . . . 74
6.5 Pointcut-advice-binding. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.6 The most refined pointcut triggers connected advice. . . . . . . . . . . . 74
6.7 An aspect with named advice. . . . . . . . . . . . . . . . . . . . . . . . . 75
6.8 A pair of unnamed advice and advice method. . . . . . . . . . . . . . . . 76
6.9 Refining named advice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.10 Refining named advice with arguments. . . . . . . . . . . . . . . . . . . . 77
6.11 Semantics of advice refinement. . . . . . . . . . . . . . . . . . . . . . . . 77
6.12 Counting the updates of Buffer objects. . . . . . . . . . . . . . . . . . . 79
6.13 Notify a listener when Buffer objects are updated. . . . . . . . . . . . . 79
6.14 Introducing the interface Serializable to Buffer and Stack. . . . . . . 79
6.15 Decomposed Serialization aspect. . . . . . . . . . . . . . . . . . . . . 80
6.16 Decomposing aspects by decomposing AFMs. . . . . . . . . . . . . . . . 80

7.1 The organizational structure of P2P-PL. . . . . . . . . . . . . . . . . . . 86
7.2 Feedback generator AFM. . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.3 Feedback generator aspect (excerpt). . . . . . . . . . . . . . . . . . . . . 89
7.4 Feedback management refinement of the class Peer. . . . . . . . . . . . . 89
7.5 Connection pooling AFM. . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.6 Connection pooling aspect (excerpt). . . . . . . . . . . . . . . . . . . . . 90
7.7 Serialization aspect (excerpt). . . . . . . . . . . . . . . . . . . . . . . . . 91
7.8 Decomposed serialization aspect (excerpt). . . . . . . . . . . . . . . . . . 92

xii



List of Figures

7.9 Encapsulating design decisions using AR. . . . . . . . . . . . . . . . . . . 92
7.10 Number of classes, mixins, and aspects in P2P-PL. . . . . . . . . . . . . 93
7.11 LOC of classes, mixins, and aspects in P2P-PL. . . . . . . . . . . . . . . 94
7.12 LOC of static and dynamic crosscutting in P2P-PL. . . . . . . . . . . . . 94
7.13 Number of crosscuts implemented by aspects. . . . . . . . . . . . . . . . 95
7.14 Peer invokes methods of Log and MessageSender. . . . . . . . . . . . . 99

8.1 AJStats Screen Snapshot. . . . . . . . . . . . . . . . . . . . . . . . . . . 108
8.2 NOO and LOC of classes, interfaces, and aspects. . . . . . . . . . . . . . 112
8.3 NOO and LOC of heterogeneous and homogeneous crosscuts. . . . . . . 113
8.4 NOO and LOC of basic and advanced advice. . . . . . . . . . . . . . . . 113
8.5 Fractions of advanced aspects and collaborations. . . . . . . . . . . . . . 114
8.6 Code reduction achieved by using AOP. . . . . . . . . . . . . . . . . . . 116

xiii





List of Tables

3.1 Classification matrix with AspectJ examples. . . . . . . . . . . . . . . . 33

4.1 A comparison of FOP and AOP. . . . . . . . . . . . . . . . . . . . . . . 48

5.1 What implementation technique for which kind of crosscutting concern? 66

7.1 Aspectual Mixin Layers used in P2P-PL. . . . . . . . . . . . . . . . . . . 87
7.2 Aspects decomposed by AR. . . . . . . . . . . . . . . . . . . . . . . . . . 96

8.1 Collected data of the analyzed case studies. . . . . . . . . . . . . . . . . 111

xv





Abbreviations

AFM Aspectual Feature Module
AHEAD Algebraic Hierarchical Equations for Application Design
AOP Aspect-Oriented Programming
AOR Aspect-Oriented Refactoring
AR Aspect Refinement
BAC Basic and Advanced Dynamic Crosscuts
CIA Classes, Interfaces, and Aspects
CORBA Common Object Request Broker Architecture
FODA Feature-Oriented Domain Analysis
FOP Feature-Oriented Programming
FOR Feature-Oriented Refactoring
HHC Heterogeneous and Homogeneous Crosscuts
HTML Hypertext Markup Language
IDE Integrated Development Environment
ITD Inter-Type Declaration
LOC Lines of Code
MDSoC Multi-Dimensional Separation of Concerns
NOO Number of Occurrences
OOP Object-Oriented Programming
P2P-PL Peer-to-Peer Product Line
SEI Software Engineering Institute
SPL Software Product Line
SWD Stepwise Development
SWR Stepwise Refinement
XML Extensible Markup Language

xvii





CHAPTER 1

Introduction

1.1 Overview

software

engineering

and software

crisis

The term ‘software engineering ’ was introduced in the NATO Working Conference on
Software Engineering in 1968 [NR69]. Though there are alternative definitions we use the
following: software engineering is the analysis, design, implementation, documentation,
customization, deployment, and maintenance of software by combining and applying tech-
nologies and practices from several fields, e.g., computer science, project management,
engineering. The software engineering offensive was started to cope with a whole class of
phenomena observed in software development that were summarized by the term ‘soft-
ware crisis ’. The software crisis became manifest in projects running over-time, projects
running over-budget, low-quality software, software that did not meet its requirements,
projects that were unmanageable, and code that was difficult to maintain.

causes for the

software crisis

Edsger Dijkstra, a pioneer of software engineering, explained the major cause for the
software crisis as follows [Dij72]:

...machines have become several orders of magnitude more powerful! To put
it quite bluntly: as long as there were no machines, programming was no
problem at all; when we had a few weak computers, programming became a
mild problem, and now we have gigantic computers, programming has become
an equally gigantic problem.

progress and

disillusion

Since the 60s, tremendous progress has been made in dealing with the software crisis.
It became possible to construct increasingly complex software systems. However, the
progress in developing concepts, methods, and tools for software engineering did not
keep track with the enormous boost of the complexity and the sheer size of contem-
porary software systems. That is, the aspiration to establish software development as
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an engineering discipline is, to a significant extent, still an aspiration [FGG+06]. The
current software science and technology base is inadequate to meet current and future
needs in software construction [Jac06, Boe06].

the Standish

Group reports

According to the Standish Group in 1995, only about 16% of software projects were suc-
cessful, 53% were fraught with problems (cost or budget overruns, content deficiencies),
and 31% were cancelled; the average software project ran 222% late, 189% over budget
and delivered only 61% of the specified functions [Gro95]. According to the Standish
Group’s most recent report, only 34% of all software projects were deemed to be suc-
cessful [Gro03]. Evidence suggests that despite the improvement from 1995 to 2003 the
current situation in software development is far from adequate [FGG+06, Jac06, Boe06,
Gla05, Gla06].

separation of

concerns and

modularity

Fundamental principles that drive the research on software engineering since the early
days are separation of concerns and modularity, which are highly related to each other.
Building software according to these principles makes it more manageable and under-
standable and consequently software reuse, evolution, and maintenance is improved.

Separation of concerns means to break down a software into pieces [Dij82, Dij76,
Par76, Par79]. These pieces are the concerns of a software system, in which a
concern is a semantically coherent issue of a problem domain that is of interest.
A concern may be a requirement such as ‘realtime operation’, a program feature
such as ‘RSA encryption’, a data structure such as a B-tree, or even a tiny issue
like implementing a length counter as long integer or as short integer. Concerns
are the primary criteria for decomposing software into smaller, more manageable,
and comprehensible parts, which is embodied by the principle of separation of
concerns.

However, the definition of separation of concerns does not provide guidance on how
to identify and arrange concerns. Cohesion proved to be an appropriate criterion.
Cohesion is the grade of functional relatedness of the pieces of code that imple-
ment a concern [YC79]. High cohesion is preferable because it is associated with
several desirable properties of software, e.g., robustness, reliability, reusability, and
understandability. Structuring software on the basis of this criterion enables the
software developer to concentrate on the issues regarding one concern in isolation,
thus minimizing the distraction by implementation details of other concerns. Par-
nas describes this approach as design for change [Par79]: a programmer structures
software such that the concern implementations encapsulate code that is likely to
change. Following this approach, separation of concerns enables the change of a
concern’s implementation without affecting or depending on other concerns.

Modularity is the principle to structure software into modules or, expressed more quan-
titatively, it measures the extent to which modules are used in a software system.
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The idea of modules emerged from several tracks of research, in particular, modular
programming [Con68], program specification [Par72a, Par72b], structured program-
ming [DDH72, Dij76], and structured design [SMC74, YC79]. Though there are
various definitions, it has been agreed that a module must be a part of a larger
system and inter-operate with other modules. Modules are self-contained, cohe-
sive building blocks of software. A module is a device to implement a concern and
modularity is a consequence of separation of concerns.

A module provides and communicates via an interface to hide specific details
of the concern it implements (information hiding) [Par72b]. Interfaces decouple
concern implementations from each other and minimize concern interdependencies.
Modules with interfaces provide an enabling mechanism for separation of concerns
and design for change.

challengesThe history of software engineering and programming language research is to a signif-
icant extent the history of supporting and improving separation of concerns and mod-
ularity. The challenge for the research community and the industry is to provide the
right languages, abstractions, models, methods, and tools to assist software developers in
building well-structured and modular software. This would be a major step to overcome
the software crisis. Unfortunately, it turned out that this is a difficult task.

aim of the

dissertation

This dissertation aspires to make a contribution to this field, i.e., to provide concep-
tual, methodological, practical, and tool-related means to improve the separation of
concerns and modularity in software. Specifically, this dissertation focuses on two
novel programming and software development paradigms, feature-oriented programming
(FOP) [Pre97, BSR04] and aspect-oriented programming (AOP) [KLM+97, EFB01].

crosscutting

concerns

Both, FOP and AOP target a specific class of design and implementation problems,
which are called crosscutting concerns [KLM+97]. A crosscutting concern is a single
design or implementation decision or issue whose implementation typically must be
scattered throughout the modules of a software system, that results in inter-mingled
code, and that leads to code replication. Crosscutting concerns are special as they
challenge traditional programming and development paradigms such as object-oriented
programming (OOP). It has been observed that crosscutting concerns lead to inherently
suboptimally structured code that decreases understandability and manageability of
software [KLM+97, EFB01, TOHSMS99].

tyranny of the

dominant

decomposition

The problem of crosscutting is not a matter of a good or bad programming style or
software design. It emerges directly from the missing support of traditional program-
ming paradigms (e.g., OOP) to decompose software in multiple ways (along multiple
dimensions), which is called the tyranny of the dominant decomposition [TOHSMS99].
That is, a program can be modularized in only one way at a time (along one dimension),
and the many kinds of concerns that do not align with that modularization end up in

3



Chapter 1 Introduction

scattered, tangled, and replicated code. FOP and AOP address this issue explicitly and
provide mechanisms for decomposing software along more than one dimension.

Although both FOP and AOP aim at modularizing crosscutting concerns, they approach
this problem from different sides. While FOP deals with the automated synthesis of
software out of features, AOP provides meta-level1 language constructs that enable to
reason about and manipulate base programs. In both FOP and AOP a programmer
defines the points in a program to be extended (a.k.a. join points) and a set of actions,
extensions, or transformations to be performed at these points.

AOP and

FOP can

profit from

each other

Though it seems that FOP and AOP are competing approaches, in this dissertation
we observe that FOP and AOP are complementary techniques. They decompose and
structure software in different ways, along different dimensions, which leads to different
program designs. We demonstrate how the combination of FOP and AOP can overcome
their individual limitations. The different strengths and weaknesses revealed and sys-
tematized in this dissertation call for a symbiosis of both programming paradigms in
order to profit from their advantages and to minimize their shortcomings.

programming

guidelines

Given the numerous, individual strengths and weaknesses of FOP and AOP, we need
guidelines to assist programmers in choosing the right technique for the right problem.
The entire dissertation is steeped in these guidelines and can be understood as a historical
overview of the author’s investigations in this problem field: the programming guidelines
have been derived from the evaluation of FOP and AOP and drive the proposal of the
symbiosis of both; they have been evaluated in a non-trivial case study, and help to
identify the current practice of using mechanisms of FOP and AOP.

In a nutshell, the guidelines for using FOP and AOP based on their strengths and weak-
nesses are the essence for comparing, combining, and unifying FOP and AOP. They
guide the way to a better understanding of crosscutting concerns and of the correspond-
ing implementation mechanisms, which, taken by itself, is a contribution to the debate
about modularity and separation of concerns.

1.2 Contribution

1. We evaluate FOP and AOP with respect to their performance in facilitating sep-
aration and modularization of crosscutting concerns, as well as related evaluation
criteria. This evaluation is preceded by a systematic classification of crosscutting
concerns on the basis of their structural properties, which enables to systematize

1 Steimann shows that AOP languages are essentially second-order languages. The processing of an
aspect requires reasoning about and involves manipulation of a program, i.e., AOP is de facto a
meta-programming technique [Ste05].
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the evaluation process. The result is a set of programming guidelines that empha-
sizes the individual strengths and weaknesses of FOP and AOP.

2. We propose the symbiosis of FOP and AOP. We discuss its design space, present
a concrete realization at the implementation level, and contribute several tools to
assist programmers in combing FOP and AOP mechanisms.

3. Given the combination of FOP and AOP, we present a unification of AOP and the
stepwise development methodology of FOP. This unification enables the uniform
treatment of all implementation artifacts of a program feature (i.e., classes and
aspects). This follows directly from the principle of uniformity that states that
program features consist of various types of software artifacts and all artifacts can
be subject of subsequent refinement [BSR04].

4. We demonstrate the practical applicability of our proposal by applying the core
language constructs and tools to a medium-sized case study. This provides first
insights into how FOP and AOP techniques would be combined in a non-trivial
setting.

5. Finally, we present our investigations in how AOP and FOP mechanisms are used
in third-party software projects. Background is that our programming guidelines
devise in which situations AOP mechanisms outperform FOP mechanisms, and
vice versa. By defining a set of code metrics, appropriate tool support, and an
analysis of a set of third-party programs, we shed light on the questions: What is
the current practice of using AOP and FOP? And to what extent related design
and implementation problems occur?

1.3 Outline

Chapter 2 lays the foundations for understanding the central ideas of this dissertation.
It limits its focus on essential concepts related to separation of concerns, mod-
ularity, FOP, AOP, and their connection to software engineering. Consciously,
we avoid getting into much detail; we do not give a comprehensive or historical
overview of related programming and software development approaches.

Chapter 3 introduces a classification framework for crosscutting concerns. This classi-
fication forms a systematic basis for the evaluation and comparison of FOP and
AOP; it is essential to infer programming guidelines for choosing the right imple-
mentation technique for the right class of crosscutting concerns.

Chapter 4 presents the evaluation of FOP and AOP. For this purpose, we define a set
of evaluation criteria that is applied in a comparison of FOP and AOP. The result
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is a catalog that contrasts the strengths and weaknesses of FOP and AOP, which
can be understood as a set of programming guidelines.

Chapter 5 elaborates on the symbiosis of FOP and AOP. After a brief discussion of
the design space, the chapter introduces the notion of an aspectual feature module
(AFM) that realizes the symbiosis. AFMs are evaluated using our criteria and
compared to traditional FOP and AOP. Finally, we give an overview of several
tools that have been developed in this dissertation and discuss related approaches.

Chapter 6 introduces the notion of aspect refinement (AR), which unifies aspects and
the stepwise development methodology of FOP. After a discussion we point to a
tool developed in this dissertation and discuss related work.

Chapter 7 reviews the results of the application of AFMs and AR to a product line
for overlay networks. We examine the collected data and discuss open issues and
related studies.

Chapter 8 reflects on the experiences gained in the case study and extracts a problem
statement. We define a set of code metrics and provide tool support for program
analysis. We discuss the results of applying our metrics to 8 small-sized to large-
sized AspectJ programs.

Chapter 9 summarizes the dissertation, puts the results into perspective, and lists sug-
gestions for further work.

6



CHAPTER 2

Design and Implementation Techniques for

Separation of Concerns and Modularity

This chapter lays the foundations for understanding the central ideas of this dissertation.
It is not intended as a historical overview or as a comprehensive survey on design and
implementation techniques for separation of concerns and modularity.

2.1 Separation of Concerns

Separation of concerns (SoC) is a fundamental principle of software engineering. It is
credited to Dijkstra [Dij76] and Parnas [Par76, Par79] who applied the principle of divide-
and-conquer to software development: it is easier to manage a problem by breaking it
down into smaller pieces than to solve the problem as is. Such pieces are the concerns of
a software system, where a concern is a semantically coherent issue of a problem domain
that is of interest. Cohesion is the grade of functional relatedness of the pieces of code
that implement a concern [YC79]. High cohesion is preferable because it is associated
with several desirable properties of software, e.g., robustness, reliability, reusability, and
understandability.

software

decomposition

In software development, separation of concerns is related to the decomposition mecha-
nisms of design and implementation. Concerns are the primary criteria for decomposing
software into smaller, more manageable and comprehensible parts. The resulting pieces
are not the concerns themselves but their representations at design and implementation
levels. For example, a concern may be a requirement such as ‘realtime operation’, a
program feature such as ‘RSA encryption’, a data structure such as a B-tree, or even
a tiny issue like implementing a length counter as long integer or as short integer. For
simplicity, we equate concerns and their representations in the remaining dissertation.

7



Chapter 2 Separation of Concerns and Modularity

benefits of

separation of

concerns

The goal of separation of concerns is to localize, untangle, separate, and encapsulate the
representations of concerns in a software system. The following benefits are attributed
to software with well separated concerns:

Comprehension: A well structured system is easier to understand [Par79, Dij76]. A
localized and separated concern representation enables the programmer to concen-
trate on that concern in isolation without getting distracted by details of other
concerns. Dijkstra formulates this as follows:

Our heads are so small that we cannot deal with multiple aspects simul-
taneously without getting confused.

Comprehensibility is a critical requirement for tasks like software reuse, customiza-
tion, and maintenance. Thus, achieving comprehensibility is the primary goal of
separation of concerns.

Reuse: Software reuse is the process of creating software systems from existing software
rather than building software systems from scratch [Kru92]. Separated concerns
can be more easily reused in different contexts than intermingled ones. The more
independent a concern is, the easier it can be detached from or attached to a
software system. The spectrum of reuse reaches from reusing a concern, i.e., its
implementation, in different variants of one software product (e.g., a component)
to reusing a concern in different, unrelated software systems (e.g., a library func-
tion) [Big98].

Maintenance: Updating, debugging, and evolving a software system are frequent tasks
in software maintenance. They usually boil down to adding, removing or changing
concern implementations. Parnas was the first to proclaim that change should be
considered when designing software; this concept is called design for change [Par79].
The idealized goal is to change software as much as possible in a non-invasive way,
i.e., by applying new pieces that implement the change and removing unneeded
ones instead of modifying existing pieces [OH92, VN96a].

Structuring software along concerns enables (1) the addition of new concerns in
form of distinct pieces of software and (2) the modification or exchange of existing
concerns in isolation.

Customization: Typically, different stakeholders have different requirements on a soft-
ware system. Thus, there is a need to customize software to meet the specific needs
of stakeholders. Ideally, a software design and implementation is variable, i.e., it
supports the easy derivation of system variants. Customizing a software system
means adjusting the given system structure in the boundaries of the supported
variability [vGBS01]. Separation of concerns is beneficial in that the implementa-
tion of a concern can come in different variants and concerns can be combined in
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different ways. Customizing software means then to choose the concerns desired
and to select those implementations that fit a requirement specification best.

software

decomposition

and

composition

Concerns are separated by decomposing software along concern representations. That
is, in all phases of the software life cycle, concerns of a software system are separate
pieces, distinguishable from other concerns. However, such separation is non-trivial
to achieve, especially in large-scale and evolved software. Design and implementation
techniques have to support separation of concerns explicitly by providing appropriate
(de)composition mechanisms. Decomposition means to break down a software design into
pieces; composition ties these pieces together to get a complete software product. Design
and implementation techniques have to provide different kinds of (de)composition mech-
anisms at different levels of abstraction in order to account for the diversity of possible
concerns. Prominent examples are the concepts of functions in structured programming
and classes in OOP. While functions decompose a software system along its instructions,
classes decompose a software system along the data to be encapsulated.

The exploration and analysis of (de)composition mechanisms is a major subject of re-
search in software engineering and programming languages. Early work addressed issues
like structured programming and information hiding. Recent work aims at software
structures at a larger scale and occurring in all phases of the software life cycle. The
following sections introduce the design and implementation techniques relevant for this
dissertation.

2.2 Stepwise Software Development

Stepwise refinement [Wir71] and program families [Par76] are two design methodologies
that are fundamental to software engineering. Both address explicitly the issue of sep-
aration of concerns. They support the incremental development of software over time
by implementing a series of design decisions being applied in several development steps,
which is called stepwise development (SWD). This way, the resulting software forms a
layered design such that each layer implements a concern that corresponds to a design
decision and a development step; subsequently applied layers build up on previously
applied layers.

2.2.1 Stepwise Refinement

Wirth was the first to articulate the role of stepwise refinement in program design [Wir71].
According to his view a program (or its specification) is gradually developed in a sequence
of refinement steps. In each step, the structural elements of the given program (instruc-
tions and data) are decomposed into more detailed elements. That is, refinement is the
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revealing of design and implementation details that have not yet been exposed and each
refinement step implies a design decision. The successive decomposition or refinement
of program specifications terminates when all structural program elements are expressed
in terms of an underlying programming language. Hence, the process of stepwise refine-
ment is a mapping between two representations of a program, where the representation
that is refined is more abstract than the representation that results.

A program specification could be written informally as natural language text, e.g.,

given an array A of size N , permute the elements of A in such a way that A

is sorted in increasing order [Wir76].

Alternatively a specification could be expressed in a formal (programming or mathemat-
ical) language that is usually tailored to a specific problem domain, e.g., information
system development [JSHS96], interactive systems [BS01], object modeling [Jac02], or
network services [Bow96], to name a few.

refinement

tree

Since for each refinement step alternative design decisions are possible, the overall refine-
ment process results in a refinement tree. The leaves of a refinement tree define different
implementations of the considered program. The path from the root of the tree to a leaf
expresses the program’s design and implementation – it is a series of refinements that
explains how a program implements its specification.

Figure 2.1 depicts an example refinement tree, adopted from [Bax92]. The root of the
tree is a program specification in form of an abstract syntax tree, which represents an
arithmetic expression (3 ∗ (y + z) + 4). By applying the two transformation rules dist
and com that implement familiar distributivity and commutativity laws the original
specification is refined into two new specifications: ‘3 ∗ y +3 ∗ z +4’ and ‘4+3 ∗ (z + y)’.
These two alternative refinement steps result in two new leaves of the refinement tree,
which are two alternative abstract syntax trees.

With stepwise refinement the programmer makes decisions how to derive a more concrete
representation of the program starting from a more general one. The resulting refinement
tree contains all alternative design decisions (in our example, applying the distributivity
and the commutativity law) made during the refinement process.

2.2.2 Program Family Development

Parnas proposed a related methodology for SWD: a program family is a set of similar
programs [Par76]. The idea is to concentrate on the commonalities of a set of programs
instead of their differences with the goal of sharing functionality between program family
members. To achieve the needed degree of reusability within a program family, Parnas
and others [Dij68, Dij76] proposed implementing software starting from a minimal base
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Figure 2.1: Implementing two design decisions by applying two refinements [Bax92]

of functionality and evolving the functionality by adding minimal extensions in a series of
development steps, which leads to conceptually layered designs. Parnas further proposed
the concept of modules that implement layers, which we explain soon (Sec. 2.3).

operating

system family

development

Figure 2.2 depicts the design of a family of operating systems [HFC76]. In contrast to
Wirth’s refinements, the layers of a program family are displayed in bottom-up order.
Starting from the layer ‘hardware’, which is the base of the operating system family,
the subsequent layers extend previous layers, e.g., layer ‘synchronization’ extends layer
‘process management ’. Note that one layer can be extended by multiple other layers,
e.g., layer ‘synchronization’ is extended by ‘special devices’ and ‘address space creation’.
Different family members consist of different sets of layers. In our example, three family
members can be derived, i.e., three operating systems: a batch system, a process control
system, and a time sharing system. Adding a layer means extending a whole family of
programs because each family member may potentially use this new layer.

2.2.3 Stepwise Refinement Versus Program Families

While Parnas’ and Wirth’s approaches are not equivalent there are certain fundamental
similarities.
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system
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a batch
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swapping

a time sharing

address space creation

process management
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disc I/O

user interface
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file system

hardware

special devices

synchronization

Figure 2.2: A program family of operating systems [HFC76].

Wirth’s

refinement

Wirth’s stepwise refinement has been associated historically with the progressive rewrit-
ing of a formal specification of a program into executable code. With each step the
program becomes more concrete and eliminates nondeterminism of program behavior.
Thus, a refinement does not extend the program behavior but makes it more concrete,
e.g., by refining the specification to strengthen the condition ‘x > 0’ to ‘x = 10’. With
each step the set of possible programs that satisfy a specification decreases.

Parnas’

program

families

Following Parnas’ approach, a family of programs is developed incrementally. The dif-
ference to Wirth’s approach is that this process starts with a minimal base and proceeds
by extending the functionality in order to encapsulate design decisions step by step. The
evolution of a program family does not start with a complete specification but with a
possibly empty base program. With each step, the set of possible programs that can be
derived from the program family increases, which is in contrast to Wirth’s approach in
which the number of potential programs decreases with each step.

unification of

Wirth’s and

Parnas’ worlds

However, an alternative interpretation of Parnas’s work is that a programmer starts with
a domain model that is implemented by a program family. A domain model captures
and relates all the knowledge that is of interest to a group of stakeholders [CE00].
By adding successively new extensions to a base the scope of possible programs that
share these extensions narrows, i.e., the program family becomes more concrete. We
and others [Big98, BSR04] favor this view since it unifies the early work of Wirth and
Parnas on stepwise software development.
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Adopting this interpretation we define a refinement as a set of changes applied to a
program. That is, a refinement extends a program by adding new constructs and it
modifies the existing structures of a program. This excludes the mere removal of existing
structural elements. A refinement is associated with a development step and can be
understood as concern being implemented.

2.2.4 Software Product Lines

Research on software product line (SPL) development is related to SWD (especially to
program families) with a special focus on economics. The Carnegie Mellon Software
Engineering Institute (SEI) describes a SPL as follows1:

A software product line (SPL) is a set of software-intensive systems that
share a common, managed set of features satisfying the specific needs of a
particular market segment or mission and that are developed from a common
set of core assets in a prescribed way.

Furthermore, the SEI makes the following statement as to why SPLs are important:

Software product lines are rapidly emerging as a viable and important soft-
ware development paradigm allowing companies to realize order-of-magnitude
improvements in time to market, cost, productivity, quality, and other busi-
ness drivers. Software product line engineering can also enable rapid market
entry and flexible response, and provide a capability for mass customization.

structural

features

To achieve the advantages stated above, Czarnecki argues that the ideal way of SPL
development is to implement a SPL as a program family [CE00]. That is, each layer
(or a set of layers) of a program family implements a feature of the corresponding SPL,
where a feature corresponds to a (set of) core asset(s). Furthermore, it is assumed that
the considered features are structural features [LBN05]. A structural feature is a feature
that has an explicit representation at design and implementation level. That is, the
assets of a feature are physically or visually represented, e.g., by files, program text,
design documents.

emergent

features

This definition excludes those features – if they are even features in the sense of do-
main modeling – that implement program behaviors that emerge indirectly from the
combination of other features at runtime, which is in science widely known as emergent
behavior [Mog06, Lod04]. For example, security characteristics of software emerge from
the concrete composition of features when the program is running [Lip05]; there is not
one or a set of assets that represent the security feature.

1 http://www.sei.cmu.edu/productlines/
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SPLs and

program

families

The approach of implementing SPLs as program families leads to a small time to market
and a high degree of reusability and customizability since new, tailored products can be
derived more easily by composing the layers that correspond the desired features [CN02,
GS04, CE00]. This also implies that SPLs are implemented in a stepwise manner, true
to the motto of SWD.

2.3 Modules

What is a

module?

A module is a structural mechanism that facilitates separation of concerns. The idea of
modules emerged from several tracks of research, namely modular programming [Con68],
program specification [Par72a, Par72b], structured programming [DDH72, Dij76], and
structured design [SMC74, YC79]. Today it has been agreed that modules are self-
contained, cohesive pieces of a software system, where cohesive refers to the ability of
a module to localize program and data structures physically, e.g., in program text or
in the file system. A module has a well-defined interface for communicating with other
modules and it can be compiled separately. Modularity is the principle to structure
software into modules. A more quantitative definition is that modularity measures the
extent to which modules are used in a software system.

information

hiding and

encapsulation

Modules embody the principle of information hiding [Par72b]. This principle states pro-
grammers should hide those design decisions in a software system that are most likely to
change (design for change), thus protecting other parts of the program from modification
if the design decision is changed. Often, information hiding is used synonymously with
encapsulation, where a module encapsulates data and program structures. Information
hiding and modules facilitate separation of concerns since a concern implementation
(module) becomes decoupled from other concern implementations. Due to the encap-
sulation property, modules can be modified or even exchanged without affecting other
modules.

modules vs.

classes

The concept of modules has evolved to object-oriented language constructs such as
classes. Their primary focus is not on separate development but on structuring software
to improve comprehensibility, reusability, maintainability, customizability, and evolvabil-
ity [Boo93, GHJV95]. Like a module a class encapsulates data and program structures
and provides an interface (information hiding). Classes can be aggregated hierarchically
to form compound classes. In contrast to the early idea of modules, classes can be
instantiated and support inheritance and subtype polymorphism. Hence, with respect
to its static properties, a class (or a set of classes) can be understood as a traditional
module.
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2.4 Feature-Oriented Programming

2.4.1 Features, Concerns, and Collaborations

What is a

feature?

Research on feature-oriented programming (FOP) studies the modularity of features in
software product lines, where a feature is an increment in program functionality [BSR04].
The concept of features is closely related to that of concerns – some researchers even
equate them [MLWR01]. We prefer a different view: while features reflect directly
the requirements of the stakeholders and are used to specify and distinguish different
software products [KCH+90, CE00], concerns are at a lower level, more fine-grained, and
not in any case of interest to stakeholders. Features are concerns, but not all concerns
are features.

feature

modules

Feature modules are modules that realize features at design and implementation levels.
They support information hiding by exploiting underlying OOP mechanisms. They are
be composed statically and can be compiled independently. Typically, features modules
refine the content of other features modules in an incremental fashion. This follows
directly the early principles of SWD. The goal of FOP is to synthesize software (indi-
vidual programs) by composing a series of desired feature modules. As feature modules
reflect the requirements on a software, FOP bridges the gap between analysis, design,
and implementation. We use the terms feature and feature module in the remaining
dissertation interchangeable.

collaborationsAn important observation is that features are implemented seldomly by single classes but
instead by a whole set of collaborating classes, where a collaboration is a set of classes
that communicate with one another to implement a feature [RAB+92, VN96c, MO04,
LLO03, BSR04, SB02, OZ05, Ern01, Ern03]. Feature modules abstract and explicitly
represent such collaborations. Hence, FOP stands in the long line of prior work on
object-oriented design and role modeling, as surveyed in [Ste00].

rolesClasses play different roles in different collaborations [VN96c]. A role encapsulates the
behavior or functionality that a class provides when a corresponding collaboration with
other classes is established – or in context of FOP, when a corresponding feature module
is present. That is, a role is that part of a class that implements the communication
protocol with other classes participating in a particular collaboration. Figure 2.3 shows
four classes participating in three collaborations. For example, class A participates in
collaboration I and II, i.e., two distinct roles implement the communication protocol
necessary for these collaborations.

From the FOP perspective, each role is implemented by a refinement (declared by the
keyword refines). That is, a role adds new elements to a class and extends existing
elements, such as methods. Usually features extend a program by adding several new
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collaboration II

collaboration I

collaboration III

class A class B class C class D

Figure 2.3: Collaboration-based design.

classes and by applying several new roles to existing classes simultaneously. Hence, the
implementation of a feature cuts across several places in the base program.

Figure 2.4 depicts the collaboration-based design of a simple program that deals with
graph data structures. The diagram uses the UML notation [BRJ05] with some exten-
sions: white boxes represent classes or roles; gray boxes denote collaborations; solid
arrows denote refinement, i.e., to add a new role to a class.

Weight

class Node

void print();

Basic
Graph

refines class Edge

Edge add(Node, Node);

void print();

Edge add(Node, Node, Weight);

void print();

Weight weight;

class Graph

refines class Graph

Node a, b;

void print();

class Weight

void print();

class Edge

Figure 2.4: Collaboration-based design of a graph implementation.

The feature BasicGraph consists of the classes Graph, Node, and Edge that together
provide functionality to construct and display graph structures2. The feature Weight
adds roles to Graph and to Edge as well as a class Weight to implement a weighted
graph, i.e., a graph that assigns to each edge a specific weight value.

2 In this dissertation we write feature names in italic fonts and names of internal elements of features
(e.g., classes, methods, fields) in typewriter fonts.
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2.4.2 Jak: FOP for Java

Jak constantsJak 3 is an extension of Java for FOP. It supports a special language construct to express
refinements of classes, e.g., for implementing roles. Classes in Jak are implemented as
standard Java classes. Figure 2.5 depicts our feature BasicGraph implemented in Jak4.
It consists of the classes Graph (Lines 1-15), Node (Lines 16-20), and Edge (Lines 21-28).
A programmer can add nodes (Lines 3-7) and print out the graph structure (Lines 8-14).

1 class Graph {

2 Vector nodes = new Vector (); Vector edges = new Vector ();

3 Edge add(Node n, Node m) {

4 Edge e = new Edge(n, m);

5 nodes.add(n); nodes.add(m);

6 edges.add(e); return e;

7 }

8 void print () {

9 for( int i = 0; i < edges.size (); i++) {

10 ((Edge)edges.get(i)). print ();

11 i f (i < edges.size() - 1)

12 System.out.print(", ");

13 }

14 }

15 }

16 class Node {

17 int id = 0;

18 Node( int _id) { id = _id; }

19 void print () { System.out.print(id); }

20 }

21 class Edge {

22 Node a, b;

23 Edge(Node _a , Node _b) { a = _a; b = _b; }

24 void print () {

25 System.out.print(" ("); a.print (); System.out.print(", ");

26 b.print (); System.out.print(") ");

27 }

28 }

Figure 2.5: A simple graph implementation (BasicGraph).

Jak

refinements

A refinement in Jak encapsulates the changes a feature applies to a class. It is declared
by the keyword refines. A sequence of refinements applied to a class is called refinement
chain, i.e., a class composed with a series of refinements forms a new class.

mixin

composition

A refinement in Jak is implemented by a mixin [BC90, SB02]. A mixin is an abstract
subclass that can be applied to various classes to form a new classes. Composing a mixin
and a class is called mixin composition; the relationship between mixin and superclass

3 http://www.cs.utexas.edu/users/schwartz/ATS.html
4 For simplicity, we merge in code listings all classes and all refinements of a feature into one piece

of code; in truth each class or refinement is located in a distinct file.
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is called mixin-based inheritance, a form of inheritance that delays the coupling between
subclass and superclass until composition time (a.k.a. mixin instantiation). Alternative
implementation mechanisms for refinements are virtual classes [MMP89, EOC06, OZ05],
traits [DNS+06], or nested inheritance [NCM04, NQM06].

Figure 2.6 depicts the feature Weight implemented in Jak: it introduces a class that
represents the weight of an edge (Lines 15-19); it refines the class Graph (Lines 1-6) by
introducing a new method add that assigns a weight value to an edge (Lines 2-5); it
refines the class Edge (Lines 7-14) by adding a field (Line 8) and a method for assigning
the weight value (Line 9) and by extending the print method to display the weight
(Lines 10-13).

A method extension is implemented by overriding the method to be extended, adding
code, and calling the overridden method via the keyword Super5 (Lines 3,11).

1 ref ines class Graph {

2 Edge add(Node n, Node m, Weight w) {

3 Edge res = Super.add(n, m);

4 res.setWeight(w); return res;

5 }

6 }

7 ref ines class Edge {

8 Weight w = new Weight (0);

9 void setWeight(Weight _w) { w = _w; }

10 void print () {

11 Super.print ();

12 System.out.print(" ["); w.print (); System.out.print("] ");

13 }

14 }

15 class Weight {

16 int w = 0;

17 Weight( int _w) { w = _w; }

18 void print () { System.out.print(w); }

19 }

Figure 2.6: Adding support for weighted graphs (Weight).

Jak feature

modules

Jak’s feature modules are represented by file system directories. Thus, they have no
textual representation at the code level. The artifacts, i.e., classes and refinements
found inside a directory are members (assets) of the enclosing feature. Figure 2.7 shows
the directory hierarchy of our graph example, including the features BasicGraph, Weight,
and Color.

In its current version, Jak supports separate compilation of feature modules but does
not support explicit interfaces, i.e., the interface of a feature module is the sum of the

5 We capitalize Super to emphasize the difference to the Java keyword super, which refers to the par-
ent type of a class (traditional inheritance). For brevity we write Super instead of Super(<argument

types>), which is used actually in Jak.
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Figure 2.7: Directory structure of a graph implementation.

interfaces of the participants of the encapsulated collaboration. However, other FOP
languages support collaboration interfaces [MO02].

2.4.3 GenVoca

GenVoca6 is an algebraic model for FOP [BO92]. Features are modeled as operations of
an algebra. Each SPL is modeled by one associated algebra, which is called a GenVoca
model. For example, ‘Graph = {BasicGraph, Weight, Color}’ denotes a model Graph

that has the features BasicGraph, Weight, and Color.

constants and

functions

Features are modeled as functions. A constant function (a.k.a. constant) represents
a base program. All other functions receive programs as input and return modified
programs as output. That is, functions represent program refinements that implement
program features. For example, ‘Weight • X ’ and ‘Color • X ’ add features to program
X, where ‘•’ denotes function composition. The design of a software product is a named
feature expression, e.g., ‘WeightedGraph = Weight • BasicGraph’ and ‘ColoredWeighted-
Graph = Color • Weight • BasicGraph’. Note that not all possible feature expressions
must be valid, i.e., there may be expressions represent syntactically or semantically in-

6 The name GenVoca is derived from the systems Genesis [BBG+88, Bat88] and Avoca [PHOA89]
that demonstrated first the duality between refinement and modules in different domains (i.e.,
data management and network protocols); GenVoca refers to the underlying domain-independent
methodology to develop software by stepwise refinement.
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correct programs [BG97, Bat05]. The set of all valid feature expressions corresponds to
the SPL, i.e., all derivable products of a given GenVoca model.

2.4.4 AHEAD

principle of

uniformity

AHEAD (Algebraic Hierarchical Equations for Application Design) is an architectural
model for large-scale program composition and the successor of GenVoca [BSR04]. It
scales the ideas of GenVoca to all kinds of software artifacts. That is, features do not
only consist of source code but of all artifacts that contribute to that feature, e.g., docu-
mentation, test cases, design documents, makefiles, performance profiles, mathematical
models. Furthermore, the principle of uniformity states that every kind of software
artifact that is part of a feature can be subject of subsequent refinement [BSR04].

containment

hierarchy

With AHEAD, each feature is represented by a containment hierarchy, which is a
directory that maintains a subdirectory structure to organize the feature’s artifacts.
Composing features means composing containment hierarchies and, to this end, com-
posing corresponding artifacts by hierarchy combination [OH92] (a.k.a. mixin compo-
sition [BC90, SB02, OZ05], hierarchy inheritance [Ern03], or superimposition [Bos99,
BF88, CM86, Kat93]). Hence, for each artifact type a different implementation of the
composition operator has to be provided.

Figure 2.8 shows the features BasicGraph and Weight ; each consists of several source
code files as well as an HTML documentation; BasicGraph contains additionally an XML
build script. The feature expression ‘WeightedGraph = Weight • BasicGraph’ combines
both features, which is implemented as a recursive combination of their containment
hierarchies. For example, the resulting file Edge.jak is composed of its counterparts
in BasicGraph and in Weight. The composition is specific to the type of the software
artifact, e.g., composing HTML is different from composing XML or Java.

The AHEAD Tool Suite (ATS)7 implements the ideas of AHEAD. It contains several
tools for developing, debugging, and composing source code and non-source code ar-
tifacts. The Jak language is integrated into the ATS and there are tools to compose
Java-based source code artifacts.

7 http://www.cs.utexas.edu/users/schwartz/ATS.html
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build.xml

Weight.jak Graph.jak Edge.jak Graph.jak Edge.jakNode.jak Graph.html

build.xml

Graph.htmlGraph.jak Graph.htmlEdge.jakNode.jak

Edge.jak = Edge.jak   Edge.jak

Weight.jak

src docsrc docsrc

WeightWeightedGraph BasicGraph

doc

Figure 2.8: Combining the containment hierarchies of two features.

2.5 Aspect-Oriented Programming

2.5.1 Crosscutting Concerns

Aspect-oriented programming (AOP) is a programming paradigm that aims at modular-
izing crosscutting concerns [KLM+97, EFB01]. Crosscutting is a structural relationship
between the representations of two concerns. In other words, a representation of a
concern crosscuts the representation of another concern. Crosscutting is an alternative
structural relationship to hierarchical and block structure. It is not defined between con-
cerns but between their representations, i.e., the modules that implement the concerns.

collaborations

are crosscuts

In our remarks on FOP, we have already considered a kind of crosscutting concern:
collaborations extend a program at different places, thus cutting across the module
boundaries introduced by classes. Feature modules modularize collaborations, which
implement features. AOP considers crosscutting concerns in general, without special
focus on feature modularity or collaborations.

tyranny of the

dominant

decomposition

Traditional languages and modularization mechanisms suffer from a limitation that is
referred to as the tyranny of the dominant decomposition, which seems to be the cause
of crosscutting [TOHSMS99]: a program can be modularized in only one way (along
one dimension) at a time, and the many kinds of concerns that do not align with that
modularization end up in scattered, tangled, and replicated code. Figure 2.9 illustrates
different dimensions of separation of concerns, e.g., along the feature dimension or the
object dimension8.

8 http://www.research.ibm.com/hyperspace/HyperJ/HyperJ.htm
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objects

features

functions

artifacts

variants

aspects

Figure 2.9: Dimensions of separation of concerns.

code

scattering,

tangling

Code scattering refers to a concern implementation that is scattered across many other
concerns implementations; code tangling refers to the intermingled implementation of
several concerns within a module. Both decrease modularity and violate the principle
of information hiding [KLM+97, EFB01, Kic06].

Figure 2.10 shows how the implemention the feature Color crosscuts our basic graph
implementation (the code associated with the feature Color is underlined). The classes
Node and Edge get a field color (Lines 3,14) and two methods setColor (Lines 4,15) and
getColor (Lines 5,16). Further on, the print methods of Node and Edge are modified to
display the colors appropriately (Lines 9,20). The implementation of the feature Color
is scattered across three classes (Color, Node, Edge) and within these classes it changes
two methods. Moreover, it is tangled with the feature Display for displaying the graph
structure, which is itself scattered over Graph, Node, and Edge.

code

scattering and

tangling

degrade com-

prehensibility

Code scattering and tangling degrade a program’s comprehensibility. The programmer
becomes distracted when dealing with tangled code, i.e., code that addresses multiple
concerns. Scattered code forces the programmer to reason about a concern in mul-
tiple places of a program. Overall, scattered and tangled code decreases reusability,
maintainability, and customizability since the concerns become coupled – short their
implementation violates the principle of separation of concerns [KLM+97, EFB01].

code

replication

A further negative effect of crosscutting is code replication, which occurs typically when
a concern interacts with multiple concerns and all interactions are implemented identi-
cally. For example, the implementation of our feature Color results in code for man-
aging and changing colors that is replicated in the classes Edge and Node. It has been
observed that code replication is a serious problem: beside the handicap of reimplement-
ing the same functionality again and again, code replication reduces software maintain-
ability [FR99] and is a potential substrate for errors caused by copy and paste of code
fragments [LLM06].
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1 class Graph { /∗ . . . ∗/ }

2 class Node {

3 Color color;

4 void setColor(Color c) { color = c; }

5 Color getColor() { return color; }

6 int id = 0;

7 Node( int _id) { id = _id; }

8 void print () {

9 Color.changeDisplayColor(getColor());

10 System.out.print(id);

11 }

12 }

13 class Edge {

14 Color color;

15 void setColor(Color c) { color = c; }

16 Color getColor() { return color; }

17 Node a, b;

18 Edge(Node _a , Node _b) { a = _a; b = _b; }

19 void print () {

20 Color.changeDisplayColor(getColor());

21 System.out.print(" ("); a.print (); System.out.print(", ");

22 b.print (); System.out.print(") ");

23 }

24 }

25 class Color {

26 static void changeDisplayColor(Color c) { /* ... */ }

27 }

Figure 2.10: Implementing the feature Color leads to code scattering, tangling, and repli-
cation (code associated to the feature Color is underlined).

2.5.2 Aspects: An Alternative Modularization Mechanism

AOP addresses the problems caused by crosscutting concerns as follows: concerns that
can be modularized well using the given decomposition mechanisms of a programming
language (a.k.a. host programming language) are implemented using these mechanisms.
All other concerns that crosscut the implementation of other concerns are implemented
as so-called aspects.

An aspect is a kind of module that encapsulates the implementation of a crosscutting
concern. It enables code that is associated with one crosscutting concern to be encap-
sulated into one module, thereby eliminating code scattering and tangling. Moreover,
aspects can affect multiple other concerns via one piece of code, thereby avoiding code
replication.

aspect

weaving

An aspect weaver merges the separate aspects of a program and the remaining program
elements at predefined join points. This process is called aspect weaving. Join points can
be syntactical elements of a program, e.g., a class declaration, or events in the dynamic
execution of the program, e.g., a call to a method in the control flow of another method.
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Figure 2.11 illustrates the weaving of two aspects into a base program consisting of three
components.

base program code aspect code

finally woven program

component B

component C

component A

weaver
aspect

aspect A

aspect B

component A component B

component C

Figure 2.11: Aspect weaving.

aspects

violate

information

hiding

Although often referred to as modularization mechanism, the traditional aspect violates
the principle of information hiding [LLO03, Ald05, SGS+05, DW06]: while the aspect
itself has an interface, it affects other modules directly, without the indirection of an
interface. This precludes developing and modifying modules independently. However, it
has been argued that traditional modularization mechanisms themselves do not perform
well with respect to crosscutting concerns [LLO03, Kic06]. Hence, aspects seem to be a
pragmatic alternative. There are several efforts that aim at restoring information hiding
in AOP [Ald05, OAT+06, DW06, SGS+05].

aspects vs.

classes

In most AOP languages the concept of an aspect extends the concept of a class. Besides
structural elements known from OOP, e.g., methods and fields, aspects may contain also
pointcuts, advice, and inter-type declarations.

Pointcuts: A pointcut is a declarative specification of the join points that an aspect will
be woven into, i.e., it is an expression (quantification) that determines whether a
given join point matches.

24



2.5 Aspect-Oriented Programming

Advice: An advice is a method-like element of an aspect that encapsulates the instruc-
tions that are supposed to be executed at a set of join points. Pieces of advice are
bound to pointcuts that define the set of join points being advised.

Inter-type declarations: An inter-type declaration adds methods, fields, or interfaces
to existing classes from inside an aspect.

2.5.3 AspectJ: AOP for Java

AspectJ 9 is an AOP language extension of Java. Figure 2.12 illustrates how an aspect in
concert with a class and an interface implements our Color feature. The dashed arrows
denote the structural elements of the graph implementation affected by the aspect (only
a subset is depicted). The AspectJ weaver merges the aspect implementation and the
basic graph implementation.

aspect AddColor

Graph

class Color

...
interface Colored

class Node

void print();

void print();

class Weight

before() : execution(void print());

...
...

Edge add(Node, Node);

class Graph

Node a, b;

class Edge

Weight weight;

void print();

Edge add(Node, Node, Weight);

void print();

Weighted

Figure 2.12: Implementing the Color feature as aspect.

Figure 2.13 depicts one possible implementation of the Color feature in AspectJ. The
aspect AddColor defines an interface Colored for all classes that maintain a color (Line 2)
and declares via inter-type declaration that Node and Edge implement that interface
(Line 4). Furthermore, it introduces via inter-type declarations a field color and two
accessor methods to Node and Edge. Finally, it advises the execution of the method
print of all colored entities, i.e., Edge and Node, to change the display color.

inter-type

declarations

for multiple

types

Note that, in AspectJ, one cannot declare one field or method for multiple types simul-
taneously. This leads to a replication of code in our Color feature: the code for introduc-
ing the field color and the two accessor methods is replicated (Fig. 2.13, Lines 6-8 and
10-12). To overcome this limitation of AspectJ, we prefer the following syntax in the
remaining dissertation: Color (Node || Edge).color introduces a field color to the

9 http://www.eclipse.org/aspectj/
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1 aspect AddColor {

2 interface Colored { Color getColor (); }

3

4 declare parents: (Node || Edge) implements Colored;

5

6 Color Node.color;

7 void Node.setColor(Color c) { color = c; }

8 public Color Node.getColor () { return color; }

9

10 Color Edge.color;

11 void Edge.setColor(Color c) { color = c; }

12 public Color Edge.getColor () { return color; }

13

14 before(Colored c) : execution(void *.print ()) && this (c) {

15 Color.changeDisplayColor (c.getColor ());

16 }

17 }

Figure 2.13: Implementing the Color feature using AspectJ (excerpt).

types Node and Edge. Using this syntax we can eliminate the redundant code caused by
inter-type declarations in our aspect AddColor, as shown in Figure 2.14.

1 aspect AddColor {

2 interface Colored { Color getColor (); }

3

4 declare parents: (Node || Edge) implements Colored;

5

6 Color (Node || Edge).color;

7 void (Node || Edge). setColor(Color c) { color = c; }

8 public Color (Node || Edge). getColor () { return color; }

9

10 before(Colored c) : execution(void *.print ()) && this (c) {

11 Color.changeDisplayColor (c.getColor ());

12 }

13 }

Figure 2.14: A more compact syntax for inter-type declarations in AspectJ.

2.6 Terminology Used in this Dissertation

In the remaining dissertation we use the following terminology and conventions. We
assume that a SPL is implemented as a program family in a SWD manner. A series
of features refines a given base program in several development steps. A refinement
encapsulates a set of changes made to a program, i.e., it adds new structures and modifies
existing ones.

We consider AOP and FOP techniques for SWD of SPLs with the primary goal of sepa-
ration of concerns and feature modularity. Consequentially, aspects and feature modules
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implement structural features of a SPL. An aspect is a class-like implementation mecha-
nism that contains additionally pointcuts, advice, and inter-type declarations, as exem-
plified by the AspectJ programming language. A feature module is an implementation
mechanism that supports the encapsulation of a collaboration of several software arti-
facts, as exemplified by the Jak programming language. Furthermore, feature modules
are composed by mixin composition.
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CHAPTER 3

A Classification Framework for Crosscutting

Concerns

This chapter shares material with the ICSE’06 paper ‘Aspectual Mixin Lay-
ers: Aspects and Features in Concert’ [ALS06], and the AOPLE’06 paper
‘On the Structure of Crosscutting Concerns: Using Aspects or Collabora-
tions?’ [ABR06].

In order to compare FOP and AOP, we present a classification framework for crosscutting
concerns. Subsequently, we demonstrate that AOP and FOP perform differently in
modularizing the different classes of crosscutting concerns.

Within our framework, we classify crosscutting concerns (crosscuts for short) along two
dimensions: (1) the structure of a crosscut can be homogeneous or heterogeneous and
(2) concerns can crosscut the static structure or the dynamic structure of a program.

3.1 Homogeneous and Heterogeneous Crosscutting Concerns

homogeneous

crosscuts

A homogeneous crosscut extends a program at multiple join points by adding one ex-
tension, which is a modular piece of code [CRB04]. For example, our Color feature is
a homogeneous crosscut. It extends the two classes Node and Edge in the same way
(cf. Fig. 2.12 and Fig. 2.13): the aspect AddColor contains an advice that advises two
method executions (print in Node and Edge) and four inter-type declarations that in-
troduce members and an interface to both classes, Node and Edge.
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heterogeneous

extension

crosscut
homogeneous

crosscut

Figure 3.1: Homogeneous and heterogeneous crosscuts.

heterogeneous

crosscuts

A heterogeneous crosscut extends multiple join points by adding multiple extensions,
where each individual extension is implemented by a distinct piece of code, which affects
exactly one join point [CRB04]. For example, our Weight feature is a heterogeneous
crosscut (cf. Fig. 2.4 and Fig. 2.6). It extends the classes Graph and Edge but each in
a different way: the refinement of Graph introduces the method add; the refinement of
Edge introduces the method setWeight and the field weight, and it extends the method
print.

comparison Figure 3.1 illustrates the difference between homogeneous and heterogeneous crosscuts.
White boxes denote the individual extensions made to a program, e.g., encapsulated in
classes, methods, or advice. Gray boxes denote the program and the crosscut that affects
the program. Figure 3.1 indicates that a homogeneous crosscut can be implemented
using a set of distinct extensions, like a heterogeneous crosscut; but this results in code
replication. For example, Figure 3.2 depicts an aspect with one piece of advice that
advises three methods; Figure 3.3 depicts an equivalent aspect but with three distinct
pieces of advice that advise only one method each – all with an identical advice body.

1 aspect FooAspect {

2 after () : execution(void A.foo()) ||

3 execution(void B.foo()) ||

4 execution(void C.foo()) {

5 /∗ do something ∗/
6 }

7 }

Figure 3.2: A homogeneous crosscut im-
plemented using one piece of
advice.

1 aspect FooAspect {

2 after () : execution(void A.foo()) {

3 /∗ do something ∗/
4 }

5 after () : execution(void B.foo()) {

6 /∗ do something ∗/
7 }

8 after () : execution(void C.foo()) {

9 /∗ do something ∗/
10 }

11 }

Figure 3.3: A homogeneous crosscut
implemented using three
pieces of advice.
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3.2 Static and Dynamic Crosscutting Concerns

static

crosscuts

A static crosscut extends the structure of a program statically [MO04], i.e., it adds
new classes and interfaces and injects new fields, methods, interfaces, etc. Note that
method extensions are not static crosscuts, as we will explain soon. AspectJ’s inter-
type declarations and Jak’s refinements that introduce new members are examples of
implementations of static crosscuts (Fig. 3.4).

1 ref ines class Edge {

2 Weight w = new Weight (0);

3 void setWeight(Weight _w) {

4 w = _w;

5 }

6 }

1 aspect AddWeight {

2 Weight Edge.w = new Weight (0);

3 void Edge.setWeight(Weight _w) {

4 w = _w;

5 }

6 }

Figure 3.4: Implementing static crosscuts in Jak (left) and AspectJ (right).

dynamic

crosscuts

A dynamic crosscut affects the runtime control flow of a program [MO04]. The seman-
tics of a dynamic crosscut can be understood and defined in terms of an event-based
model [WKD04, Läm99]: a dynamic crosscuts runs additional code when predefined
events occur during the program execution. Such events are also called dynamic join
points [MK03b, WKD04, OMB05]. Examples of programming constructs that imple-
ment dynamic crosscuts are method extensions in Jak (via overriding) and advice in
AspectJ (Fig. 3.5). While the former is limited to method-related join points [MO04],
the latter may advise a more sophisticated set of events.

1 ref ines class Edge {

2 void print () {

3 Super.print ();

4 System.out.print(" [");

5 w.print ();

6 System.out.print("] ");

7 }

8 /∗ . . . ∗/
9 }

1 aspect AddWeight {

2 after (Edge e) :

3 execution(void Edge.print ()) && this (e) {

4 System.out.print(" [");

5 e.w.print ();

6 System.out.print("] ");

7 }

8 /∗ . . . ∗/
9 }

Figure 3.5: Implementing dynamic crosscuts in Jak (left) and AspectJ (right).

comparisonFigure 3.6 illustrates the difference between static and dynamic crosscuts. The left
shows a static crosscut. It crosscuts the static structure of a program, here represented
as a class graph. White boxes denote classes or their extensions; empty arrows denote
inheritance and filled arrows denote the application of extensions; an extension to a
dashed box means the introduction of a new class.
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execute code
when an event
fires and
conditions hold

dynamic crosscutstatic crosscut

(control flow graph)(class graph)
static structure dynamic structure

inject classes,
methods, fields,

and interfaces
superclasses,

Figure 3.6: Static and dynamic crosscuts.

The right shows a dynamic crosscut. It affects the dynamic structure of the program,
here represented as a control flow graph. The extensions are applied to join points that
are events in the dynamic control flow. In our example, the elements of the control flow
graph are method executions and the arrows between them are calls. An extension may
by applied to a method call or a method execution.

Note that dynamic crosscutting should not be confused with dynamic weaving, which
refers to the weaving of code at loadtime or runtime [PGA02, SCT03, BHMO04].

Basic and Advanced Dynamic Crosscuts

Dynamic crosscuts are especially interesting when they not only affect method calls
or executions. Work on AOP suggests that expressing a program extension in terms
of sophisticated events increases the abstraction level and captures the programmer’s
intension more directly. Capturing and advising these events using traditional OOP
mechanisms results in complicated workarounds. There are many proposals for new
language constructs for defining and catching new kinds of events during the program
execution [OMB05, HG06, MK03a]. In order to distinguish these new kinds of events
and the novel language mechanisms that support them from simpler events known from
OOP, we distinguish between basic dynamic crosscuts and advanced dynamic crosscuts,
which we define as follows:

1. A basic dynamic crosscut addresses only events that are related to method calls and
executions; advanced dynamic crosscuts address all kinds of events, e.g., throwing
an exception or assigning a value to a field.

2. A basic dynamic crosscut accesses only runtime variables that are related to the
method call or execution that is advised, i.e., arguments, result value, and enclosing
object instance of the advised method; advanced dynamic crosscuts can expose
more information related to a join point, e.g., the runtime type of the caller of a
method.
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3. Basic dynamic crosscuts affect a program control flow unconditionally; advanced
dynamic crosscuts may specify a condition that is evaluated at runtime, e.g., a
method execution is only affected if it occurs in the control flow of another method
execution.

4. Basic dynamic crosscuts address only simple events; advanced dynamic crosscuts
can specify composite events and event patterns, e.g., trace matches are executed
when events fire in a specific pattern, thus, involving the history of computa-
tion [AAC+05].

basic dynamic

crosscuts are

method

extensions

Principally, basic dynamic crosscuts can be implemented as method extensions using
traditional OOP. They extend a method execution/call unconditionally and access only
information that is available in method extensions, i.e., the arguments, the result, and
the enclosing runtime object.

3.3 Summary: Classification Matrix

Table 3.1 contrasts several examples of the different classes of crosscutting concerns
written in AspectJ. It can be seen that our classification framework lays out the set
of possible crosscutting concerns in a two-dimensional space. Homogeneous as well as
heterogeneous crosscuts can be either static or dynamic. Dynamic crosscuts can be basic
dynamic and advanced dynamic.

homogeneous heterogeneous

static /* Introducing a method to two classes */
void (Point || Shape).setX(int x)

{ /* . . . */ }

/* Introducing a method to one class */
void Point.setX(int x)

{ /* . . . */ }

basic
dynamic

/* Advising a set of method executions */
before() : execution(* set*(..))

{ /* . . . */ }

/* Advising one method execution */
before() : execution(void Point.setX(int))

{ /* . . . */ }

advanced
dynamic

/* Advising a set of method executions de-
pendently on the program control flow */
before() : execution(* set*(..)) &&

!cflow(execution(* rotate(..)))

{ /* . . . */ }

/* Advising one method execution dependently on the
program control flow */
before() : execution(void Point.setX(int)) &&

!cflow(execution(void Line.rotate(double)))

{ /* . . . */ }

Table 3.1: Classification matrix with AspectJ examples.

issues to

address

Given these different classes of crosscutting concerns it is straightforward to ask whether
and how FOP and AOP support their modularization. Also it is interesting to contem-
plate how often these different kinds of concerns occur when implementing program fea-
tures and which mechanisms are beneficial for implementation. This kind of knowledge
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helps (1) build better tools that reflect the programmer’s needs; (2) provide program-
ming guidelines for exploiting programming mechanisms better; (3) discover misuse of
programming mechanisms.
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CHAPTER 4

A Conceptual Evaluation of Aspect-Oriented

and Feature-Oriented Programming

This chapter shares material with the ICSE’06 paper ‘Aspectual Mixin Lay-
ers: Aspects and Features in Concert’ [ALS06].

This chapter presents a conceptual evaluation and comparison of AOP and FOP with
respect to implementing program features. First, we propose a set of evaluation criteria
that build upon our classification framework for crosscutting concerns. Then, we apply
our criteria to evaluate and compare AOP and FOP. Finally, we put our results in
perspective and formulate a goal statement for this dissertation.

focus on

programming

support

In our evaluation we focus exclusively on the implementation mechanisms associated
to FOP and AOP. We do not take software development methodologies, tool support,
type systems, or mathematical foundations discussed in context of AOP and FOP into
account. For FOP this means that a feature module encapsulates a collaboration of
software artifacts that are composed by mixin composition. For AOP this means that
an aspect is a class-like entity that contains additionally pointcuts, advice, and inter-type
declarations.

4.1 Evaluation Criteria

4.1.1 Abstraction

Abstraction in computer science helps to manage the complexity of software [Sha84].
Abstraction is the process of emphasizing and hiding the details of software at different
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levels and to different degrees. Abstraction refers also to a construct or concept that
has been subjected to the process of abstraction [Kru92]. Separation of concerns and
modules are the enabling technologies for abstraction. But abstraction is more than
breaking down a system into modules. Abstracting from details means to introduce new
concepts or constructs and to introduce new descriptions or formalizations that condense
relevant information and that reduce complexity. A principal goal of abstraction is to
express a design or implementation issue in terms of abstractions that are close to what
the programmer has in mind when thinking about this issue.

An abstraction of a software artifact consists of a high-level, intuitive, and useful spec-
ification that maps to a realization at a lower level; the specification describes “what”
the abstraction does, whereas the realization of the abstraction describes “how” it is
done [Kru92].

In our evaluation we examine the abstraction capabilities of FOP and AOP for imple-
menting program features. Since both AOP and FOP rely on OOP, we focus only on
those abstraction mechanisms that exceed the level of traditional OOP (e.g., classes,
methods) and on how they differ.

4.1.2 Crosscutting Modularity

Modularity is the property of software systems that measures the extent to which they
have been composed of modules. We focus exclusively on crosscutting modularity since
FOP and AOP are equal with respect to modularization mechanisms known from OOP.
Specifically, we use the results of the previous chapter to examine how aspects and feature
modules perform in modularizing the different classes of crosscutting concerns that occur
when implementing features, which are classified by our framework. That is, we evaluate
how AOP and FOP perform in modularizing homogeneous and heterogeneous as well as
static and dynamic crosscutting concerns.

4.1.3 Feature Cohesion

Cohesion is the ability of a feature to encapsulate all implementation details that de-
fine the feature in one unit [BK06, LHBC05]. While modularity addresses the internal
structure of a feature, i.e., the modular implementation of the artifacts that implement a
feature, cohesion addresses the feature as a whole, i.e., the encapsulation of all artifacts
that contribute to the feature. The highest degree of cohesion is achieved by a one-to-one
mapping of requirements to corresponding units at implementation level [CE00].

For example, it is easier and more intuitive to plug a cohesive data management com-
ponent to a cohesive network driver in one step than to connect the data management
and the network software in many places by hand.
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composed programbase program feature

Figure 4.1: Integrating features by superimposition.

4.1.4 Feature Integration

Once a set of desired features has been selected, they are integrated to form a tailored
software product. Principally, we distinguish between two types of feature integration:

Superimposition: One way to apply a feature to a program is to superimpose the pro-
gram structure with the structure of the feature [OH92, Ern03, SB02, BSR04,
OZ05, Bos99]. The concept of superimposition was first proposed for combin-
ing control structures of distributed processes [BF88, CM86, Kat93]. In terms of
object-orientation, superimposition means that the class hierarchy of the program
is merged with the class hierarchy of the feature [OH92], where the latter hierarchy
is a sparse version of the former. The merging is applied recursively and structural
elements are merged by name and type; merging classes is implemented by set
union and merging methods is implemented by overriding.

Figure 4.1 illustrates the process of superimposition by example: on the left side is
the class hierarchy of the base program; classes of the base program are depicted
as white boxes. The program’s class hierarchy is superimposed (denoted by ‘•’)
by a sparse class hierarchy of a feature; gray boxes are the classes of the feature
and dashed white boxes mark the not-affected classes of the base program. On the
right side the result of superimposing the structures of the base program and the
feature is depicted; white boxes are the unmodified classes of the base program;
gray boxes are the classes introduced by the applied feature; boxes that are half
white and half gray denote the merged classes of base program and feature.

Crosscutting integration: Superimposition as feature integration technique is not al-
ways sufficient [MO02, MO03, LLO03]. Sometimes the structure of a feature does
not fit the structure of the base program. This happens (1) when a feature is
reused in different base programs that have different structures and (2) when a
programmer wants to express a new feature in terms of abstractions that differ
from those in the base program [Nov00]. For example, suppose a network software
is refined by an application protocol. The protocol at application level can be ex-
pressed more easily in terms of producer (server), consumer (client), and product
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composed programbase program feature

Figure 4.2: Crosscutting integration of features.

(delivered data) than by using the basic network abstractions such as sockets and
streams. Since there are no structural counterparts between the two components
it is complicated to achieve a clean mapping, i.e., it is not possible to superimpose
their structures. Thus, such integration results in code scattering and tangling.

Figure 4.2 illustrates the process of a crosscutting integration of features: the left
side shows the base program, the middle a feature, and the right side the composed
program. Within the composed program the original base program and the applied
feature are integrated via a set of links (denoted by dashed arrows) that connect
the structural elements of both sides, e.g., object references, method invocations,
advice, wrappers. In contrast to superimposing features, the integration pattern
is cluttered. The links between base program and feature crosscut the program’s
as well as the feature’s structure. Moreover, additional code for establishing the
links is necessary.

4.1.5 Feature Composition

Features can be composed to form a new features. Technically, features are composed by
superimposition or crosscutting integration. Using feature composition a programmer
reuses code, which is beneficial because thinking in terms of existing features is often
easier than building features from scratch. For example, constructing a data manage-
ment feature out of simpler features such a storage management, query evaluation, and
caching, is more efficient than constructing a tailored data management component for
each use case from scratch.

4.2 Evaluation of AOP and FOP

We apply our catalog of criteria to evaluate and compare AOP and FOP.
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4.2.1 Abstraction

FOP and AOP provide different abstraction mechanisms beyond those used in OOP.

FOP abstracts

from

composition

details

FOP’s feature modules encapsulate all software artifacts that implement a feature, which
may be of different types. The definition of a feature module is separated from the com-
position specification, which enumerates the desired features by name. This hides the
details of composing the internal artifacts from the programmer. The keyword refines

denotes the composition of artifacts by set union (e.g., classes) and sequence combi-
nation (e.g., method extensions). It abstracts from a concrete implementation (e.g.,
mixin-based inheritance [BC90, SB02, BSR04], jampack composition [BSR04], virtual
classes [MMP89, EOC06, OZ05], nested inheritance [NCM04, NQM06], traits [DNS+06],
or classboxes [BDN05]).

AOP

abstracts

from the

control flow

AOP increases the level of abstraction by introducing the concept of join points. A
join point refers either to a lexical point in the static program structure or to an event
in the dynamic flow of a program. This way programmers specify program extensions
with respect to the dynamic program semantics [WKD04]. The programmer can think in
terms of events and actions without being aware of the details that enable event handling
and action triggering. For example, the pointcut cflow refers to the dynamic control flow
of a program; it can be used to limit a set of join points to those that occur in the control
flow of another join point. Of course, cflow can be implemented using standard OOP
techniques [LHBL06] – but this obscures the programmers intention and leads to code
scattering and tangling. AOP’s pattern-matching and wildcard mechanisms abstract
from workarounds necessary for refining each join point by a separate extension.

different

abstraction

mechanisms

The bottomline is that both, FOP and AOP, provide sophisticated but different mecha-
nisms that exceed the capabilities of OOP. While feature modules abstract from details
about composition and refinement, aspects provide abstractions for the control flow and
for selecting and refining multiple join points.

4.2.2 Crosscutting Modularity

Homogeneous and Heterogeneous Crosscuts

A significant body of work has exposed that collaborations of classes are predominantly
of a heterogeneous structure [VN96c, MO04, LLO03, Ern01, OZ05, Ost02, TVJ+01,
EOC06, TOHSMS99, BSR04, SB02, Ste00, Ste05, Bos99]. That is, the roles and classes
added to a program differ in their functionality, as in our graph example. A collaboration
is a heterogeneous crosscut and a heterogeneous crosscut can be understood as collabo-
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ration applied to a program. Hence, a feature module is well qualified to implement a
heterogeneous crosscut.

In contrast to feature modules, aspects perform well in extending a set of join points
using one coherent advice or one localized inter-type declaration, thus, modularizing a
homogeneous crosscut. This way programmers avoid code replication. The more join
points are captured by a homogeneous crosscut, the higher the pay-off of AOP.

Although both approaches support the implementation of the crosscuts the other ap-
proach focuses on, they cannot do so elegantly [MO04].

1 ref ines class Node {

2 Color color;

3 Color getColor () { return color; }

4 void setColor(Color c) { color = c; }

5 void print () {

6 Color.changeDisplayColor (getColor ());

7 }

8 }

9 ref ines class Edge {

10 Color color;

11 Color getColor () { return color; }

12 void setColor(Color c) { color = c; }

13 void print () {

14 Color.changeDisplayColor (getColor ());

15 }

16 }

17 class Color { /∗ . . . ∗/ }

Figure 4.3: Implementing the Color feature as a feature module.

using

collaborations

instead of

aspects

Implementing our Color feature (a homogeneous crosscut) using FOP we would intro-
duce two refinements to the classes Node and Edge, which introduce exactly the same
code (Fig. 4.3). Our AOP-based solution proposed previously avoids this code replication
(Fig. 4.4).

using aspects

instead of

collaborations

Conversely, an aspect may implement a collaboration (a heterogeneous crosscut) by
bundling a set of inter-type declarations and advice, as shown in Figure 4.5. The aspect
AddWeight introduces the method add and the field weight via inter-type declarations
(Fig 4.6, Lines 2-5; Line 6) and extends the print method via advice (Lines 7-11).
Hence, it implements a heterogeneous crosscut, which is a collaboration of Weight and
two roles, a role of Edge and a role of Graph. We have noticed and so have others [Ste05,
MO04, Bos99] that not expressing a collaboration in terms of object-oriented design
(i.e., roles implemented as refinements) decreases program comprehensibility. This is
because programmers cannot recognize the original structure of the base program within
a subsequent refinement – in our example the structuring in Graph, Node, and Edge.
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1 aspect AddColor {

2 interface Colored { Color getColor (); }

3 declare parents: (Node || Edge) implements Colored;

4 Color (Node || Edge). color;

5 void (Node || Edge). setColor(Color c) { color = c; }

6 public Color (Node || Edge). getColor () { return color; }

7 before(Colored c) : execution(void *.print ()) && this (c) {

8 Color.changeDisplayColor (c.getColor ());

9 }

10 }

11 class Color { /∗ . . . ∗/ }

Figure 4.4: Implementing the Color feature as an aspect.

aspect AddWeight

class Node

void print();

class Weight

void print();

Edge add(Node, Node);

void print();

class Graph

Node a, b;

void print();

class Edge

Edge Graph.add(Node, Node, Weight);

Weight Edge.weight;

after(Edge) : execution(void Edge.print()) ...; <<advice>>

<<inter−type decl.>><<inter−type decl.>>

Basic
Graph

Figure 4.5: Implementing a collaboration as an aspect.

large-scale

features

One may argue that, for this simple example, it does not really matter whether one uses
feature modules or aspects. But the difference between FOP and AOP becomes more
obvious when considering features at a larger scale. Then it become clear that aspects
lack scalability. Suppose a base program consists of many classes and a feature extends
most of them. In a FOP solution the programmer defines, per class to be extended, a
new role with the same name (Fig. 4.7). This way the programmer is able to retrieve the
program structure within the new feature. There is a one-to-one mapping between the
structural elements of the base program and the elements of the feature; base program
and feature are merged recursively by name and type.

In an AOP solution one would merge all participating roles into one (or more) aspect(s)
(Fig. 4.8). While this is possible, it flattens the inherent object-oriented structure of the
feature and makes it hard to trace the mapping between base program and feature [Ste05,
MO04]. Note that the difference between AOP and FOP, as shown in the Figures 4.7
and 4.8, is not only a matter of visualization. The point is that the inner structure of the
aspect does not reflect the structure of the base program; there is no natural mapping
between structural elements of the base program and the feature. So it is no coincidence
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1 aspect AddWeight {

2 Edge Graph.add(Node n, Node m, Weight w) {

3 Edge res = add(n, m);

4 res.weight = w; return res;

5 }

6 Weight Edge.weight;

7 after (Edge e) : this (e) && execution(void Edge.print ()) {

8 System.out.print(" [");

9 e.weight.print ();

10 System.out.print("] ");

11 }

12 }

Figure 4.6: An AspectJ aspect that implements a collaboration.

feature
module

base
program

Figure 4.7: Implementing a large-scale feature using a feature module.

that the mapping is complicated and hard to trace for the programmer. The one-to-one
mapping of the FOP solution is easier to understand especially for large-scale features.

roles and

aspects

Implementing each role as a distinct aspect, as suggested by Hanenberg et al. [HU02],
Kendall [Ken99], and Sihman et al. [SK03], would obscure the object-oriented structure
as well. In our example we would implement the refinements of Graph and Edge as
two distinct aspects. This approach would enable to establish a one-to-one mapping
between the structural elements of the base program and the elements of the feature
(provided reasonable naming conventions). However, this way inheritance and refine-
ment is replaced simply by aspect weaving without any further benefit. We and oth-
ers [Ste05, MO04] argue that such a replacement of object-oriented techniques without
any benefit is questionable, especially with respect to the additional complexity intro-
duced by aspect weaving [Ste06, Ale03].
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base

aspect

program

Figure 4.8: Implementing a large-scale feature using an aspect.

The reason why aspects fail in expressing collaborations appropriately is that roles are
closely connected to their classes; role-based design is inherently object-oriented [Ste00].

Static and Dynamic Crosscuts

static

crosscuts

Features and aspects may extend the structure of a base program statically, i.e., by in-
jecting new members and introducing new superclasses and interfaces to existing classes.
Figure 4.9 depicts a refinement and an aspect, which both inject a method and a field
as well as introduce a new interface to the class Edge.

1 ref ines class Edge

2 implements Comparable {

3 boolean compare(Edge e) {

4 /∗ . . . ∗/
5 }

6 }

1 aspect ComparableEdge {

2 declare parents: Edge implements Comparable;

3 boolean Edge.compare(Edge e) {

4 /∗ . . . ∗/
5 }

6 }

Figure 4.9: Implementing a static crosscut via refinement (left) and via aspect (right).

Additionally, features are able to encapsulate and introduce new classes. Traditional
aspects, as exemplified by AspectJ, are not able to introduce independent classes – at
least not as part of an encapsulated feature. While it is correct that one can just add
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node

composite node (subgraph)

Figure 4.10: A recursive graph data structure.

another class to an environment, e.g., using AspectJ, this is at the tool level and not at
a model level. The programmer has to build his own mechanisms (outside of the tool) to
implement feature modularity [LHBC05], e.g., in FACET, an AspectJ implementation
of a CORBA event channel, the programmers implemented a non-trivial mechanism for
feature management [HC02].

dynamic

crosscuts

As opposed to AOP, FOP provides no extra language support for implementing dy-
namic crosscuts. That is, dynamic crosscuts can be implemented but there are no
tailored abstraction mechanisms to express them in a more intuitive way, e.g., by an
event-condition-action pattern. Without depending on a workaround, FOP supports
just basic dynamic crosscuts, i.e., method extensions [MO04]. While this works for
many implementation problems, there are certain situations in which a programmer
may want to express a new program feature in terms of the dynamic semantics of the
base program, i.e., to implement an advanced dynamic crosscut (cf. Sec. 3.2). Aspects
are intended exactly for this kind of crosscut. They provide a sophisticated set of mech-
anisms to refine a base program based upon its execution, e.g., mechanisms for tracing
the dynamic control flow and for accessing the runtime context of join points.

extending

recursive data

structures

demands

aspects

When extending the printing mechanism of our graph implementation, we can take
advantage of these sophisticated mechanisms of AOP. Background is that the print

methods of the participants of the graph implementation call each other, – especially,
when nodes of a graph may be (sub)graphs themselves (Fig. 4.10).

Generally, recursive data structures are an appropriate use case for AOP. The AOP
language constructs for advanced dynamic crosscuts (e.g., cflow, cflowbelow) enable
to advise only selected join points within the control flow of a program. For example,
to make sure that we do not advise all calls to print, but only the top-level calls, i.e.,
calls that do not occur in the dynamic control flow of other executions of print, we can
use the cflowbelow pointcut as condition evaluated at runtime (Fig. 4.11). The advice
shown is an example of an advanced dynamic crosscut.
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1 aspect PrintHeader {

2 before() : execution(void *. print ()) && !cflowbelow(execution(void *. print ())) {

3 printHeader ();

4 }

5 void printHeader () {

6 System.out.print("header: ");

7 }

8 }

Figure 4.11: Advising the printing mechanism using advanced advice.

using FOP for

advanced

dynamic

crosscuts

Though language abstractions such as cflow and cflowbelow can be implemented (em-
ulated) by FOP, this usually results in code replication, tangling, and scattering. For
example, Figure 4.12 depicts the above extension to the printing mechanism implemented
using FOP. Omitting AOP constructs results in a complicated workaround (underlined)
for tracing the control flow (Lines 2,6,8) and executing the actual extension conditionally
(Lines 4-5). Compared to the FOP solution, the AOP solution captures the intension of
the programmer more precisely and explicitly (cf. Fig. 4.11).

1 ref ines class Node {

2 static int count = 0;

3 void print () {

4 if(count == 0)

5 printHeader ();

6 count++;

7 Super.print ();

8 count–-;

9 }

10 void printHeader () { /∗ . . . ∗/ }

11 }

Figure 4.12: Implementing the extended printing mechanism via refinement.

The bottomline is that FOP and AOP are complementary with respect to crosscutting
modularity. FOP is strong in modularizing collaborations, which are heterogeneous
and basic dynamic crosscuts. AOP performs well in modularizing homogeneous and
advanced dynamic crosscuts.

4.2.3 Feature Cohesion

Features implemented via feature modules have an explicit representation at the design
and implementation level. All structural elements that contribute to the feature are
encapsulated inside the feature module. Hence, a high degree of feature cohesion is
achieved.
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Using AOP, a programmer expresses new features by aspects, but in many cases features
cannot be expressed using one single aspect, especially not in complex programs [LHBC05,
MO04]. Often the programmer introduces several aspects and additional classes, e.g.,
the Weight feature consists of the aspect AddWeight and the class Weight. One may
argue that we could express every feature using only one aspect, but this violates the
principle of separation of concerns – it destroys the inner structure of a feature’s im-
plementation, as explained in Section 4.2.2. Classes and aspects are too small units of
modularity and therefore not suitable for implementing features [VN96c, MO04, LLO03,
Ern01, OZ05, Ost02, TVJ+01, EOC06, TOHSMS99, BSR04, SB02, Ste00, Ste05, Bos99].

Nevertheless, aspects can be encapsulated in packages or may contain nested classes but
there are no mechanisms for refining and composing these constructs. However, hybrid
approaches like Caesar [MO02, MO03, MO04] exploit the mechanisms of collaboration-
based designs such as mixin composition and virtual classes.

In summary, feature modules provide appropriate means for the cohesive implementation
of program features. The reason for that is they encapsulate collaborations of artifacts
and they can be composed. An aspect should not implement an entire feature because
in traditional AOP it is a class-like entity that cannot express a collaboration. What
follows is that aspects can be a part of a feature implementation, as we will show in
Chapter 5.

4.2.4 Feature Integration

When applying a feature to a program, an FOP compiler superimposes the structure of
the feature module with the structure of the base program. Superimposition is imple-
mented by merging recursively the hierarchical structures of feature modules by name
and type (mixin composition) [BSR04, OZ05, AGMO06, Ern03].

If a feature module is of a different structure than the base program, the code for
integrating the feature and the base program has to be implemented by hand. Usually,
this results in code scattering and tangling [MO04, LLO03]. The bottomline is that
FOP does not support crosscutting integration very well.

It has been shown that aspects, in collaboration with other mechanisms such as wrap-
pers, can help in integrating structurally independent components, i.e., features that
differ in their inner structure [MO02, MO03, LLO03]. Pointcuts and advice are hereby
used to modularize the crosscutting integration code, which would otherwise lead to
code tangling, scattering, and replication. Hence, aspects facilitate a well modularized
crosscutting integration of features.

But AOP does not support superimposition. Indeed, aspects may implement roles or
even entire collaborations but they always have to specify explicitly where the base
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program is to be modified. There is no matching by name, type, and/or structure, as
advocated in [SB02, BSR04, TOHSMS99, OZ05, AGMO06, Ern03].

The bottomline is that FOP is appropriate for superimposition and AOP for crosscutting
integration of features.

4.2.5 Feature Composition

Feature modules can be composed to form new features modules. This enables the
programmer to generate compound features out of basic ones. A feature module is im-
plemented as a containment hierarchy, which can be nested hierarchically. The algebraic
theory behind FOP models a feature as a function; applying a feature to a program is
modeled as function application and composing features as function composition.

It has been observed that composing aspects is non-trivial or even impossible [LHBC05,
LHBL06]. While aspects can be applied to a program individually, two aspects cannot
be composed to form a new aspect. The composition is further complicated by the
hard-to-understand precedence rules for ordering the application of aspects.

4.3 Summary, Perspective, and Goals

Table 4.1 summarizes the results of our conceptual evaluation. It reveals that both pro-
gramming paradigms complement one another. That is, both have strengths where the
respective other is weak. For example, while FOP is sufficient to encapsulate collab-
orations, which are heterogeneous crosscuts, AOP suffices in expressing homogeneous
crosscuts, thus avoiding code replication. Furthermore, AOP is strong in abstracting
the dynamic control flow and FOP in abstracting the composition of features. The
benefits of using both AOP and FOP together offer rewards that neither of them could
accomplish in isolation.

symbiosis of

FOP & AOP

A clever symbiosis of both paradigms might replace the weaknesses of one paradigm
with the strengths of the other. However, an unfavorable symbiosis might lead to even
worse results. The following chapters address this issue in greater depth.

A further crucial issue that arises from the symbiosis proposed is to what extent the
individual mechanisms of AOP and FOP are really needed. In this dissertation we
discuss first results of analyzing a series of case studies to address this issue.
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evaluation criteria FOP AOP

abstraction good support: FOP provides
abstraction mechanisms and tool
support for feature composition
and program refinement

good support: AOP has an
event-based model and abstracts
from details of refining multiple
join points

crosscutting
modularity

heterogeneous
crosscuts

good support: feature modules
encapsulate and compose collab-
orations of classes and refine-
ments

limited support: aspects bun-
dle sets of inter-type declarations
and advice, but lack of abstract-
ing and expressing collaborations

homogeneous
crosscuts

no support: feature modules
provides no explicit language
constructs for refining multiple
join points simultaneously

good support: aspects provide
wildcards and pattern matching
mechanisms to refine multiple
join points simultaneously

static
crosscuts

good support: feature modules
can inject new fields, methods,
and classes as well as declare new
superclasses/interfaces

limited support: aspects can
inject new fields and methods –
but no classes – as well as declare
new superclasses/interfaces

dynamic
crosscuts

weak support: feature mod-
ules can implement only basic
dynamic crosscuts via overriding
(method extensions); there is no
support for advanced dynamic
crosscuts

good support: aspects provide
sophisticated mechanisms for ad-
vising a program based on its dy-
namic semantics (basic and ad-
vanced dynamic crosscuts)

feature cohesion high degree: feature mod-
ules encapsulate all artifacts that
contribute to a feature

low degree: aspects cannot en-
capsulate collaborations of mul-
tiple artifacts that contribute to
a feature

feature
integration

super-
imposition

good support: FOP provides
explicit support for superimposi-
tion – merging hierarchical struc-
tures recursively by name and
type

no support: AOP does not pro-
vide any mechanisms for super-
imposing hierarchical structures
of software artifacts

crosscutting
integration

no support: no mechanisms
for expressing and modularizing
crosscutting integration code

good support: aspects can
connect feature implementations
and modularize the integration
code

feature composition good support: feature modules
can be composed to form new
features; this is modeled by func-
tion composition

no support: aspects cannot be
composed; difficult composition
rules

Table 4.1: A comparison of FOP and AOP.
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CHAPTER 5

The Symbiosis of Feature Modules and Aspects

This chapter shares material with the ICSE’06 paper ‘Aspectual Mixin Lay-
ers: Aspects and Features in Concert’ [ALS06] and the GPCE’05 paper ‘Fea-
tureC++: On the Symbiosis of Feature-Oriented and Aspect-Oriented Pro-
gramming’ [ALRS05].

In this chapter we address the following issues: (1) how to combine FOP and AOP and
(2) does their combination outperform FOP and AOP in isolation?

First, we explore the space for achieving the symbiosis of FOP and AOP. Then, we
present our approach for integrating feature modules and aspects, which we call aspectual
feature modules (AFMs). Finally, we present our attempts to provide adequate tool
support and discuss related approaches.

5.1 Design Space

FOP and AOP can be combined principally in two ways: (1) design a programming
language that combines the mechanisms of AOP and FOP, which we call an in-language
approach, and (2) integrate aspects as software artifacts into the development style of
FOP and SWD, which we call an architectural approach.

in-language

approach

The in-language approach enables to explore the language properties of FOP and AOP
as well as their possible integration. As our evaluation will reveal, some language mech-
anisms of AOP and FOP are redundant. It is an interesting research question what a
novel language should look like that integrates AOP and FOP, but in an aggregated and
stripped-down form. To put it in other words, with the in-language approach we can
explore the minimal core language for implementing features, true to the motto: what
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is not essential will be omitted. Moreover, it would be possible to address advanced
language level issues such as type systems and soundness.

architectural

approach

The architectural approach is a software engineering approach. It takes into account
that FOP is also a design method to develop SPLs in a SWD manner. AHEAD as archi-
tectural model comprises all kinds of software artifacts and lays an algebraic foundation
for features and SWD. In this sense, aspects are just a new software artifact that should
be integrated into the architectural model as well, however, with special characteristics
and individual support at the language level. Choosing this approach would combine
the implementation mechanisms of AOP and FOP. We could explore the relationship
of feature modules and aspects with respect to the implementation of the large-scale
building blocks of SPLs and their impact on software design.

While both approaches promise interesting insights, we can choose only one in order
not to exceed the scope of this dissertation. Since we aim at SPLs and SWD it is
reasonable to explore the architectural approach first. Though we address one or the
other language level issue (e.g., in Chapter 6), an in-depth analysis of what a minimal
and efficient FOP/AOP language would look like is relegated to future work.

5.2 The Integration of Feature Modules and Aspects

Since AHEAD provides an architectural model for FOP, we describe our integration of
FOP and AOP on top of the AHEAD model.

feature

modules

decompose

object-

oriented

designs

When designing and implementing SPLs in a feature-oriented way, a programmer starts
usually by modeling and abstracting real-world entities in terms of classes and objects
and their collaborations. The result is an object-oriented design (left side of Fig. 5.1).
FOP further structures this design along collaborations that classes undergo. Only
the subsets of classes (roles) that participate in a collaboration to implement a certain
feature are encapsulated inside the corresponding feature module, i.e., features crosscut
the object-oriented design (right side of Fig. 5.1). Subsequent features refine existing
features by superimposing their structure (collaborations) [OH92, BSR04, SB02, Bos99,
OZ05, Ern03]. Hence, a feature module is a mechanism that decomposes an object-
oriented design along a further dimension, i.e., the features of a program.

feature

modules lack

crosscutting

modularity

Our evaluation pointed us to the fact that in some situations the implementation of
a feature cannot be modularized appropriately by using a traditional feature module
implemented for instance in Jak, i.e., attempts to do so result in code replication, and
code scattering and tangling. Typically, these situations are related to crosscutting
phenomena. We argue that the shortcomings of FOP revealed by our evaluation are
directly responsible for this issue.
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inheritance refinement associationclassfeature module

decomposition

Figure 5.1: Feature-driven decomposition of an object-oriented design.

integrating

aspects to

improve

crosscutting

modularity

To address this issue, we propose to employ AOP since it provides powerful mechanisms
to modularize crosscutting concerns. Nevertheless, as our evaluation revealed, simply
using aspects instead of feature modules for implementing program features is not ap-
propriate either, e.g., because of the lack of feature cohesion and the missing abstraction
mechanisms for collaborations. Instead, we propose to use aspects to implement only
concerns that crosscut a given object-oriented design and that cannot be modularized
well using feature modules, thus creating an aspect-oriented design, i.e., a hierarchy of
classes and aspects (left side of Fig. 5.2).

decomposing

aspect-

oriented

designs

In order not to forgo the benefits of feature modules, we suggest further to decompose
such aspect-oriented design using the mechanisms of FOP: While the aspect-oriented
design serves as a substructure, feature modules decompose this design further, along the
features of the program.. Hence, a feature is implemented by a collaboration of classes
and aspects (right side of Fig. 5.2)1. Benefit of this integration is that we have well
encapsulated large-scale feature modules that refine one another incrementally and that
dispose of powerful mechanisms for dealing with crosscutting phenomena.

inheritance associationclass

weaving
feature module

decomposition

aspect refinement

Figure 5.2: Feature-driven decomposition of an aspect-oriented design.

1 Note that the original aspect has been split into two pieces (a base and a subsequent refinement).
In Chapter 6, we address this issue in more depth.
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aspects and

feature

modules do

not compete

In summary, aspects and feature modules are not competing implementation techniques
but decompose a program in different ways. That is, from our perspective a program
design is decomposed along three dimensions: classes, aspects, and features. An object-
oriented design is the basis; aspects modularize certain kinds of concerns that crosscut
the underlying object-oriented design; feature modules decompose the design to impose
a structure that is of interest to stakeholders, i.e., the features of the program. In
this symbiosis, FOP and AOP profit from each other and overcome their individual
limitations, as we will illustrate in this dissertation.

5.3 Aspectual Feature Modules

Aspectual feature modules (AFMs) is a concrete approach to implement the integration
of AOP and FOP. AFMs extend the notion of a traditional feature module known from
Jak by encapsulating, beside classes and refinements of classes, also aspects. That is,
an AFM encapsulates the roles of collaborating classes and aspects that contribute to
a feature. Hence, a feature is implemented by a collection of artifacts, among them
classes, refinements, and aspects. We argue that this is close to the ideal of what a
feature should be. Thus, a feature is implemented by different kinds of artifacts, each
artifact appropriate for a specific design or implementation problem.

Figure 5.3 shows a base program (light gray box above) refined by an AFM (light
gray box below). The AFM refines the base program in two ways: (1) it contains a
class refinement and (2) an aspect (dark gray box) to implement the changes to be
made to the base program. Our implementation of AFMs relies on mixin layers [SB02]
and AHEAD refinements [BSR04]. Other mechanisms such as virtual classes [MMP89,
EOC06, OZ05], nested inheritance [NCM04, NQM06], and traits [DNS+06] would be
possible (see Sec. 5.6).

inheritance

mixin−based inheritance

weaving

association aspect

class, mixin

Figure 5.3: Aspectual feature modules.

two ways of

refinement

An AFM can refine a base program in two ways: (1) by using mixin-composition or (2) by
using aspect-oriented mechanisms, i.e., advice and inter-type declarations. Probably the
most important contribution of AFMs is that programmers may choose the appropriate
technique – refinements or aspects – that fits a given problem best. Moreover, they can
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apply a combination of both and decide to what extent either technique is used. The
questions that arise consequentially are (1) when to use AOP and FOP mechanisms
and (2) how often their application really occurs in real-world software projects. We
elaborate on this in more depth in Chapter 7 and Chapter 8.

Figure 5.4 depicts the feature-oriented design of our graph implementation, consisting of
the features BasicGraph, Weight, and Color. Color is implemented by using an aspect
and a class; it is encapsulated by an AFM. As we discussed before, advising executions
of the methods print in Node and Edge is a homogeneous crosscut – the same is true
for injecting the field color and the methods setColor and getColor to Node and Edge

(cf. Fig. 4.4). In this situation, it is beneficial to use an aspect because it is able to
avoid replicated code. Encapsulating the aspect AddColor and the class Color improves
feature cohesion, compared to a pure AOP variant.

Weight

class Node

void print();

class Color

...

void print();

class Weight

Basic

Edge add(Node, Node);

void print();

Edge add(Node, Node, Weight);

void print();

Weight weight;

Node a, b;

void print();

before() : execution(void print());

...

aspect AddColor

class Graph__Basic class Edge__Basic

class Graph class Edge

Graph

Color

Figure 5.4: Implementing the feature Color as an aspectual feature module.

superimposing

containment

hierarchies

As with standard feature modules, an AFM is represented as a containment hierarchy.
Besides Java or C++ artifacts an AFM contains also aspect files. Figure 5.5 depicts
the simplified containment hierarchies of our graph features BasicGraph, Weight, and
Color. The containment hierarchy synthesized finally is generated by superimposing the
three feature hierarchies. The composition order is specified via a feature expression.
During the composition the programmer needs not to be aware of which kinds of software
artifacts actually are inside the features to be composed. This helps to concentrate on the
composition process at the feature level and facilitates compositional reasoning because
implementation details are hidden. That is, the programmer needs not to know which
files and types of artifacts contribute to a feature implementation.
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Graph.jak Edge.jak Graph.jak Edge.jakNode.jakColor.jakWeight.jakColor.jakAddColor.aj Weight.jakGraph.jak Edge.jakNode.jak AddColor.aj

ColoredWeightedGraph WeightColor BasicGraph

Figure 5.5: Superimposing containment hierarchies including aspects.

mixin and

jampack

composition

The result of superimposing containment hierarchies is a program, i.e., a set of collab-
orating software artifacts. Batory et al. propose two principal ways of implementing
the actual composition [BSR04]. Figure 5.6 depicts a possible hierarchy of classes and
aspects synthesized by the above feature selection. Classes and their refinements are
merged into composite classes, which is called jampack composition; Figure 5.7 depicts
the same program synthesized by mixin composition, which translates refinement to
subclassing, i.e., a base class and a series of refinements is translated to a base class
and a series of subclasses. Note that, beside these two solutions, also alternative mech-
anisms such as virtual classes, nested inheritance, and traits could implement (emulate)
refinements of classes.

before() : execution(void print());

...

aspect AddColor

class Color

...

Weighted
Graph

Colored

void print();

class Node

void print();

void print();

class Weight

Weight weight;

void print();

Edge add(Node, Node, Weight);

Edge add(Node, Node);

class Graph

Node a, b;

class Edge

Figure 5.6: Jampack-composed graph implementation.

two-staged

composition

of AFMs

Either way, after the composition process we have in case of AFMs a traditional aspect-
oriented program (and in case of traditional feature modules an object-oriented pro-
gram). Now it becomes clear that it is necessary to weave the aspects and the object-
oriented base program in a subsequent step – after the base classes and refinements have
been composed. These two steps can be accomplished by different compiler passes or by
different tools.

AFMs are

language

independent

AFMs integrate feature modules and aspects. The AHEAD architectural model is the
basis for the integration. Thus, AFMs are independent of a specific host language. They
can be implemented in any pair of object-oriented and aspect-oriented language which
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before() : execution(void print());

...

aspect AddColor
Graph
Weighted
Colored

class Edge

class Node

void print();

void print();

class Weight class Color

...

class Graph__Basic class Edge__Basic

class Graph

Edge add(Node, Node);

void print();

Edge add(Node, Node, Weight);

void print();

Weight weight;

Node a, b;

void print();

Figure 5.7: Mixin-composed graph implementation.

can be woven, e.g., Java and AspectJ, C++ and AspectC++2, or C# and AspectC#3,
etc. This circumstance makes the concept of AFMs invariant to the specifics of the
host languages. When the host languages improve, especially the AOP languages, then
AFMs improve as well. Thus, AFMs can profit from research in AOP and FOP. With
an in-language approach that would not be possible or only with a major effort.

5.4 A Conceptual Evaluation of Aspectual Feature Modules

To evaluate AFMs and to compare them to traditional FOP and AOP we apply our
evaluation criteria.

5.4.1 Abstraction

AFMs support the combined abstraction mechanisms of feature modules and aspects.
On the one hand, AFMs are treated as regular feature modules; a programmer com-
poses AFMs by enumerating the feature names without needing to know the internal
implementation details. The keyword refines abstracts from the composition seman-
tics, i.e., mixin composition, jampack composition, and others4. On the other hand,
AFMs contain aspects and thus build upon the advanced capabilities of AOP to imple-
ment a program refinement in dependence of the runtime control flow. Features can be

2 http://www.aspectc.org/
3 http://www.dsg.cs.tcd.ie/dynamic/?category_id=169
4 Chapter 6 explains how this maps to aspects in order to compose and refine them as well.
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implemented on top of the event model of AOP. The wildcard and pattern matching
mechanisms of AOP avoid code replication in case of homogeneous crosscuts.

The integration of feature modules and aspects leads to a broader arsenal of abstrac-
tion mechanisms available when implementing and composing features – it unifies the
strengths of FOP and AOP.

5.4.2 Crosscutting Modularity

Homogeneous and Heterogeneous Crosscuts

The integration of aspects and the traditional constituents of feature modules enables the
programmer to choose the right technique for solving the right problem: the programmer
uses aspects to implement homogeneous crosscuts and a set of classes and refinements
to implement heterogeneous crosscuts, which are in fact collaborations. As mentioned,
this is independent of whether a crosscut is static or dynamic. Aspects, classes, and
refinements can be combined at will.

Static and Dynamic Crosscuts

The integration of FOP and AOP allows us to express static crosscuts in two ways, using
refinements of classes and using inter-type declarations in aspects. This introduces
a semantic redundancy. As mentioned in the previous paragraph, we propose to use
aspects to implement static crosscuts that are homogeneous and to use traditional feature
modules to implement static crosscuts that are heterogeneous.

By using aspects, a programmer can implement features depending on the runtime con-
trol flow. As with static crosscuts, method extensions can be implemented by aspects
(using advice) and by refinements (using method overriding). We handle this analo-
gously to static crosscuts: use aspects for dynamic crosscuts that are homogeneous and
use feature modules and method extensions for basic dynamic crosscuts that are het-
erogeneous. Advanced dynamic crosscuts are always implemented using advice because
FOP does not supports adequate language mechanisms.

An observance of these guidelines improves the crosscutting modularity of AFMs com-
pared to traditional feature modules without destroying the object-oriented structure
per se.
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5.4.3 Feature Cohesion

Since we encapsulate aspects in feature modules, we achieve a high degree of feature
cohesion. Aspects as well as collaborating classes (e.g., aspect AddColor and class Color)
are located in one feature module along with other software artifacts that contribute to
the implementation of the feature (e.g., documentation, makefiles, test cases). Despite
their encapsulation in feature modules, aspects still crosscut module boundaries, but
this is intended to be able to modularize certain kinds of crosscuts. We are aware that
this property is controversial [Ste06, Ale03], but our approach does not rely on a specific
AOP mechanism and will profit by improvements to AOP, e.g., open modules [Ald05,
OAT+06], information hiding interfaces [SGS+05], stratified aspects [BFS06], or harmless
advice [DW06]. What is novel is that the programmer is able to recognize explicitly
which artifacts belong to a feature, not only at the file system or tool level but also at
the model level.

5.4.4 Feature Integration

The structures of feature modules are superimposed during composition. While this is
appropriate for many integration problems [BSR04, SB02, Ern03, Bos99, OH92, OZ05],
superimposition is not always sufficient [MO02, MO03, TOHSMS99]. Using tradi-
tional feature modules in the form of collaborations the integration of non-related,
structural differing features results in workarounds, code scattering, and code tan-
gling [MO03, LLO03, Her02]. This is because of their manifold dependencies and in-
teractions [Nov00]. But it has been shown that aspects in concert with wrappers can
modularize such integration code [MO03]. AFMs support superimposition and can em-
ploy aspects for crosscutting integration, thus outperforming FOP and AOP used in
isolation.

5.4.5 Feature Composition

AFMs can be aggregated to form new AFMs. At implementation level this is accom-
plished by nesting containment hierarchies. At model level it is described by function
composition. Thus, aspects as software artifacts become nested in feature hierarchies.
With traditional AOP such mechanisms have to be implemented by hand, which is non-
trivial, e.g., as done in the FACET project [HC02]. However, the problem of composing
aspects to form new aspects is not solved.
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5.5 Tool Support

We provide tool support for AFMs on top of two host programming languages, C++
and Java.

5.5.1 FeatureC++

FeatureC++5 was developed by the author within the scope of this dissertation. It is
a language extension of C++ that supports FOP. It consists of a tool for composing
feature modules and an FOP compiler for C++ artifacts. Specifically, it introduces
class refinement to the C++ language in the form of the syntax presented here, i.e.,
the keywords refines and Super – with some minor adaptations to the C++ standard.
FeatureC++ supports AFMs by integrating AspectC++ [SLU05] aspects into feature
modules. Furthermore, it supports the AHEAD algebraic expressions and design rule
checks for compositional reasoning [BSR04].

FeatureC++

feature

modules

Figure 5.8 depicts a template class List (Lines 1-6) and a refinement (Lines 7-13). The
class List receives the type of the items being stored. The refinement adds a new
variable size (Line 11) and extends the method put (Line 12) to increment the size.
Note that the refinement extends also the type argument list. Given this refinement, the
programmer specifies the type of the items and the type of the size counter. This kind of
refinement is called generic refinement and it is embedded in a generic feature module.
Generic feature modules can be parameterized statically using the powerful template
mechanism of C++. A deeper explanation of generic feature modules is out of scope of
this dissertation and described elsewhere [AKL06].

1 template <typename _ItemT >

2 class List {

3 typedef _ItemT ItemT;

4 ItemT *head;

5 void put(ItemT *i) { i->next = head; head = i; }

6 };

7 template <typename _ItemT , typename _SizeT >

8 ref ines class List {

9 typedef _ItemT ItemT;

10 typedef _SizeT SizeT;

11 SizeT size;

12 void put(ItemT *i) { super::put(i); size ++; }

13 };

Figure 5.8: A FeatureC++ code example.

5 http://wwwiti.cs.uni-magdeburg.de/iti_db/fcc/
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compilation

process

Figure 5.9 depicts the process of compiling AFMs using FeatureC++. The compiler
receives FeatureC++ code as input and transforms it to native C++ code and to As-
pectC++ code. The transformation is done on top of abstract syntax trees. The Fea-
tureC++ parser uses the PUMA6 framework. In a second step PUMA is used to weave
the AspectC++ aspects and the native C++ code. Finally, the woven C++ code is
compiled to produce binaries. A deeper description of the FeatureC++ compiler is out
of scope of this dissertation and is published elsewhere [ALRS05, AKL06].

.cc

.o

.fcc

AspectC++ / C++

compiler

binaries

.cc

.o

compiler

.fcc

transformed

sources

PUMA

C++
compiler

AspectC++

FeatureC++

sources
FeatureC++

.o

.fcc

.cc

Figure 5.9: FeatureC++ compilation process.

5.5.2 AHEAD Tool Suite & AspectJ

A further way to implement AFMs is to combine the AHEAD Tool Suite (ATS) and
AspectJ. While Jak is used to compose traditional feature modules, AspectJ weaves
the aspects of the individual feature modules to the synthesized class hierarchies. The
examples given in this dissertation are written in this way. This necessitates some minor
tool support and modifications to the aspect code. For example, a build script needs to
keep track of the aspects included in the selected feature modules and to weave them
in a subsequent step. Also the programmer has to be aware of the fact that the target
classes of an aspect are renamed during the compilation process, e.g., class List of
feature BasicList is renamed to class List__BasicList. In FeatureC++ this is handled
automatically. While a further explanation of the technical problems is out of scope of
this dissertation, we refer to the successful application of this approach to a non-trivial
software project (see Chapter 7).

The process of compiling AFMs using the ATS and AspectJ is similar to the one of
FeatureC++ (cf. Fig. 5.9). It is worth to note that we were able to integrate two tools

6 http://ivs.cs.uni-magdeburg.de/˜puma/
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(ATS and AspectJ) to achieve an appropriate support for AFMs. This demonstrates
that AFMs indeed are a language-independent approach that is realizable with current
tools. Of course, in contrast to the integrated solution of FeatureC++, some workaround
is necessary (build scripts, minor code adjustments).

5.5.3 FeatureIDE

Supporting feature-oriented software development across the entire software life cycle is
the aim of a parallel dissertation project. It provides a tool FeatureIDE that is an inte-
grated development environment for feature-oriented domain analysis (FODA) [KCH+90],
FOP, as well as the subsequent configuration. FeatureIDE was developed (and is still
under development) in cooperation with the author of this dissertation [LAMS05]. It
supports AFMs based on FeatureC++ as well as AHEAD & AspectJ. Figure 5.10 de-
picts a FeatureIDE screen snapshot that shows the FODA features model of our graph
example. It contains the features BasicGraph, Weight, Color, and PrintHeader, all visu-
alized as boxes. The feature model is created in a drag-and-drop way like in a drawing
program.

Figure 5.11 depicts a stack of feature modules generated automatically from the fea-
ture diagram. It consists of the feature modules BasicGraph, Weight, and PrintHeader.
The generation process creates the underlying file system structure for the containment
hierarchies of the feature modules. Feature modules are visualized as gray boxes and
artifacts within a module as white boxes. In our example, PrintHeader is an AFM and
contains an aspect.

5.6 Related Work

Implementation of Refinements

Our approach of implementing class refinement is based on mixins and mixin-based
inheritance [BC90, VN96b]. We chose mixins because of their success in several do-
mains [CBML02, BZM01, BJMvH02, BCGS95, VN96c, AB04, LAS05]. However, we
are aware of several alternative mechanisms that might achieve similar results (we dis-
cuss only a representative selection).

Traits aim at structuring object-oriented programs [DNS+06]. Traits are stateless units
of code reuse that group multiple methods, but not state-holding members. Multiple
traits can be combined using glues in order to synthesize a final class. Traits offer cus-
tomizability at a more fine-grained level than mixins. Traits could be used to implement
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Figure 5.10: Feature modeling in FeatureIDE.

Figure 5.11: A stack of feature modules in FeatureIDE.

refinements of classes that contain methods only. However, in our experience refinements
of classes often requires to add state variables, i.e., fields.

Virtual classes are a sophisticated mechanism to combine mixin composition with poly-
morphism [MMP89, EOC06]. Since virtual classes depend on the dynamic type of an
enclosing object (class-valued attributes of the object), their semantics varies depending
on the dynamic object identity. Virtual classes have been shown useful for the implemen-
tation of collaboration-based designs [AGMO06], but they require runtime instances of
collaborations as a whole. It is not obvious how to align that with the AHEAD principle
of uniformity where features contain beside code artifacts also non-code artifacts.
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Nested inheritance [NCM04] and classboxes [BDN05] are related to virtual classes. The
difference is that the types of the inner classes (the participants of a collaboration) do
not depend on the runtime type of the enclosing object but on the static type of the
enclosing class. Therefore, these both approaches are closer to the static composition
semantics of AHEAD and AFMs than virtual classes are. Though nested inheritance
and classboxes are in-language approaches they might be adopted to implement AFMs.

Delegation is a mechanism for implementing object-based inheritance [Lie86]. This en-
ables the runtime reconfiguration of inheritance hierarchies and could be used to im-
plement refinements of classes. As with virtual classes, this is only meaningful for
collaborations that are instantiated and composed at runtime, e.g., as with delegation
layers [Ost02]. This is difficult to align with the AHEAD architectural model and de-
mands further investigation.

Implementation of Feature Modules

Several languages and tools support collaboration-based design. Potentially all of them
could be used to implement feature modules and AFMs, however, each with some limi-
tations.

Several languages support the abstraction and static composition of mixin layers, e.g.,
C++ mixin layers [SB02], P++ [Sin96], and Java layers [CL01]. Other approaches
exploit related ideas of composing and nesting class hierarchies [Coo89, Ern03], e.g.,
Scala [OZ05], Jx [NCM04], J& [NQM06], Classbox/J [BDN05], CaesarJ [AGMO06],
ContextJ [CHdM06], to name a few; all these are in-language approaches.

A main advantage of AFMs is that they have AHEAD as an architectural model – the
approaches mentioned above do not refer to any model. Hence, AFMs build upon the
strengths of AHEAD: beside classes and aspects also other kinds of software artifacts
may be included in a feature; feature modules are composed declaratively by means of
a separate language (feature expressions) and checked against domain-specific design
rules [Bat05]. This opens the door to automatic algebra-based optimization and com-
positional reasoning [BSR04]. It is not obvious how to carry this over to in-language
approaches because the definition of features is done in the same language as their com-
position. That is, without a separated composition mechanism/language it is not trivial
to implement mechanisms for optimizing and reasoning about composition specifications.

Jiazzi is a component system that supports the composition of binary collaborations
via external rules [MFH01]. Since collaborations are abstracted outside of the language
Jiazzi fits the AHEAD architectural model. However, while aspects could possibly be
integrated, it is not obvious how to compile them independently.
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Aspects and Collaborations

Several studies suggest to exploit the synergetic potential of mechanisms for aspects
and collaborations, e.g., Aspectual Components [LLM99], Adaptive Plug-and-Play Com-
ponents [ML98], Pluggable Composite Adapters [MSL00], Caesar [AGMO06], Aspectual
Collaborations [LLO03], and Object Teams [Her02]. Since these approaches are highly
influenced by one another, we compare our approach to their general concepts.

All the approaches mentioned abstract collaborations explicitly at the languages level
and integrate different kinds of mechanisms associated to AOP, e.g., pointcuts and ad-
vice, aspectual methods, traversals, adapters, and bindings. These AOP mechanisms are
intended mainly for the modularization of crosscutting concerns that arise from integrat-
ing two collaborations, which we call crosscutting integration in AFMs (cf. Sec. 4.1.4).

According to the design space of integrating AOP and FOP, the approaches above fall
into the first category: they integrate AOP and FOP mechanisms at language level. This
is advantageous when exploring issues like typing and polymorphism. Consequently,
these approaches address issues such as on-demand remodularization (a.k.a. a-posteriori
integration) of collaborations, aspectual polymorphism, dynamic aspect deployment, and
distributed aspect components, which all are not supported by AFMs.

Aspects and Roles

Pulvermüller et al. [PSR00] and Sihmam et al. [SK03] propose to implement collabora-
tions as single aspects that inject the participating roles into the base program by using
introductions and advice. In our experience, explicitly representing collaborations by
traditional object-oriented techniques and refinements facilitates program comprehen-
sibility, which is in line with prior work [VN96c, MO04, LLO03, Ern01, OZ05, Ost02,
TVJ+01, EOC06, TOHSMS99, BSR04, SB02, Ste00, Ste05, Bos99]. Favoring the ap-
proach of Pulvermüller et al. and and Sihmam et al. would lead in the end to a base
program with empty classes that are extended by a series of aspects that inject structure
and behavior. This would destroy the object-oriented design of the program and prevent
the programmer from understanding the structure and behavior of the overall program
as well as its individual features.

Hanenberg et al. [HU02], Kendall [Ken99], and Sihmam et al. [SK03] suggest to use as-
pects for implementing individual roles. In our context this would mean to replace
each refinement of a class within a feature by one or more aspects. We and oth-
ers [Ste05, MO04] argue that replacing traditional object-oriented techniques that suffice
(e.g., inheritance) is questionable. Instead, we favor to use aspects only when traditional
techniques fail.
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Multi-Dimensional Separation of Concerns

Multi-dimensional separation of concerns (MDSoC) is a concept and method that aims
at the clean separation of multiple, potentially overlapping and interacting concerns
simultaneously, with support for on-demand remodularization to encapsulate new con-
cerns at any time [TOHSMS99]. Hyper/J supports MDSoC for Java [OT00]; it intro-
duces the concept of hyperslices, which maps roughly to an encapsulated collaboration
of classes. It has been observed that features in AHEAD and hyperslices have many
commonalities, especially regarding their composition semantics based on superimposi-
tion and their mechanisms for composing hyperslices/features [BLS03]. What differs in
FOP is that integrating two features that are of a different structure demands a man-
ual integration of the artifacts inside the features, e.g., by using wrappers or multiple
inheritance [MO02, Her02]. Hyper/J supports declarative composition rules to estab-
lish a (possibly complex) mapping between different hyperslices. AHEAD supports only
recursive merging of containment hierarchies by type and name.

AFMs, as extension to traditional feature modules, use aspects to establish the mapping
between two unrelated features, as suggested first by Mezini et al. [MO03]. This is related
to the Hyper/J composition rules, but at a lower level (language level). In this respect,
AFMs follow more the approach of Caesar than of Hyper/J. It remains an open issue
which variant of on-demand remodularization and crosscutting integration is preferable.

Aspect Quantification and Composition

Traditionally, aspects are quantified globally. Conceptually, they may affect potentially
all elements of a program. Unfortunately, this approach ignores the principle of SWD
that refinements are permitted to affect only refinements that have been applied in
previous development steps [Wir71, Dij76, Par76, Par79]. Several studies show that
this circumstance is directly responsible for several problems and penalties, e.g., unpre-
dictable program behavior [MA05, DFS04, DFS02, LHBL06], weak modularity [GSF+05,
GSC+03] and decreased evolvability [Lie04, LHBL06, GB03].

In order to address this issue, Lopez-Herrejon et al. propose an approach to aspect
composition [LHBL06]. They model aspects as functions that operate on programs.
Applying several aspects to a program maps to function composition. For example,
A2(A1(P )) denotes a program P refined by aspect A1, and the result refined by A2. In
this way the scope of aspects is restricted to a particular step in a program’s development,
e.g., A1 can advise P but not A2. This is called bounded quantification of aspects as
opposed to unbounded quantification used in traditional AOP.

The idea of bounding aspect quantification can be integrated seamlessly into AFMs:
Since a compiler, e.g., FeatureC++, knows to which development step (feature module)
each aspect and each refinement belongs, it can determine which program parts the
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aspects are permitted to affect. In [ALS05, KAS06, AL06] we discuss an approach for
implementing functional aspects (aspects with bounded quantification) by restructuring
their pointcut expressions. In a nutshell, pointcuts are modified such that the connected
advice affects only join points associated with previous development steps, i.e., feature
modules that have been applied before (Fig 5.12). A more detailed explanation is out
of scope of this dissertation and can be found elsewhere [ALS05, KAS06, AL06].

restructured
pointcuts don’t
match subsequent
features

Figure 5.12: Implementing functional aspects via pointcut restructuring.

What is important is that the notion of AFMs enables, for the first time, to implement
and experiment with bounded aspect quantification. Even if there is no agreement on
the benefits of bounded aspect quantification [LHBL06], our approach may help to prove
corresponding arguments and deliver empirical evidence.

Aspects and Information Hiding

One issue of AFMs is that current AOP languages do not respect the principle of in-
formation hiding [Ste06, SGS+05, Ald05, OAT+06]. However, there are several efforts
to solve this problem, e.g., open modules [Ald05, OAT+06] and information hiding in-
terfaces [SGS+05, GSS+06] propose module interfaces that specify explicitly which join
points may be advised – the others are hidden. Harmless advice is a restricted form
of advice that is designed to obey a weak non-interference property [DW06]. It may
change the termination behavior of computations and use I/O, but it does not otherwise
influence the final result of the mainline code. Stratified aspects adjust the quantification
mechanism of aspects to avoid infinite recursion caused by advice that unintentionally
advise itself [BFS06].

The point here is that AFMs can profit from these developments. Since AFMs do not
depend on a specific host language, new languages can easily be integrated. This is a
major advantage of AFMs compared to in-language approaches.
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heterogeneous homogeneous

static a set of refinements that
add
elements

one piece of inter-type
declaration

basic
dynamic

a set of refinements that
override methods

one piece of basic advice

advanced
dynamic

a set of advanced advice one piece of advanced
advice

Table 5.1: What implementation technique for which kind of crosscutting concern?

5.7 Summary

The notion of AFMs defines a feature as a collection of artifacts, among them classes,
refinements, and aspects that collaborate. We argue that this is close to the ideal of
what a feature should be. They are implemented by different kinds of artifacts, each
artifact appropriate for a specific design or implementation problem.

The conceptual evaluation has shown that regarding almost any criterion AFMs perform
better than aspects or Jak-like feature modules in isolation. However, mixin composi-
tion and aspect weaving overlap with regard to the implementation of refinements: (1)
inter-type declarations and refinements of classes inject new members (static crosscuts);
(2) advice and method overriding refine methods calls/executions (dynamic crosscuts).
Hence, a crucial question arises: when to use what mechanism without interspersing
both? As explained, our evaluation gives the answer: on the one hand, the programmer
uses collaborations of classes and refinements in the situations in which they suffice,
i.e., in implementing heterogeneous and basic dynamic crosscuts. On the other hand,
the programmer uses aspects to implement certain kinds of crosscutting concerns, i.e.,
homogeneous and advanced dynamic crosscuts, where traditional feature modules fail.
Table 5.1 summarizes what implementation technique should be used for which kind of
crosscut.

We conclude that AFMs perform better than FOP and AOP by themselves because they
combine the strengths of both – presuming programmers apply the right technique for
implementing the right problem. While the guidelines in Table 5.1 are reasonable, they
provide no certainty that the resulting implementation is structured appropriately nor
that the combination of AOP and FOP mechanisms does not lead to hidden conflicts
or inconsistencies. In Chapter 7, we present our experiences of applying AFMs to a
non-trivial case study, thus evaluating our programming guidelines.

In the next chapter we address several interesting issues that arise from the integration
of aspects into the incremental development model of FOP.
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CHAPTER 6

Aligning Aspects and Stepwise Development

This chapter shares material with the APSEC’05 paper ‘Aspect Refinement
and Bounded Quantification in Incremental Designs’ [ALS05].

AFMs integrate aspects into the incremental development style of FOP and AHEAD.
Consequently, the following issues arise, which we address in this chapter: (1) does AOP
fit with the principles of SWD and, if not, (2) how can AOP be aligned with SWD?

6.1 Aspects and Stepwise Software Development

aspects are

just another

kind of

software

artifact

AHEAD, the architectural model of AFMs, defines that a feature is implemented by
a collection of collaborating software artifacts of varying types. In this sense aspects
are just another kind of software artifact. The AHEAD principle of uniformity has an
interesting consequence: since aspects are artifacts as any others, it is natural to refine
them in a SWD manner as well. That is, AFMs may not only extend and modify classes
via subsequent refinement but also aspects, which we call aspect refinement (AR). Hence,
AR is the consequential application of SWD principles to the world of AOP.

three use

cases for AR

With AR, aspects evolve over time, as do all other software artifacts. In each develop-
ment step aspects may be refined, i.e., extended and modified. In this dissertation we
focus on three use cases for refining aspects, which may overlap in parts:

1. Adapting aspects to the changes made to a base program, e.g., join points have
changed or new join points occur.

2. Tailoring aspects to changing user requirements, e.g., the user needs an aspect to
implement a new design decision.
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3. Decomposing aspects to decouple them from a specific configuration of the base
program, e.g., a base program in different configurations demands aspects in dif-
ferent variants.

Applying AR to deal with the above situations means a decomposition and subsequent
composition of an aspect out of a base aspect and a series of refinements. Refinements
should be freely combinable – of course, in the limits of desired program behavior. This
flexibility facilitates reuse of aspect code. The user-driven composition of AFMs and
thus of aspects and their refinements customizes aspect-specific functionality. AR en-
ables a similar improvement in reusability and customizability of aspect code as the
analogous object-oriented mechanisms do for classes, e.g., mixins [BC90, SB02], refine-
ments [BSR04], and virtual classes [MMP89, EOC06, OZ05].

unification of

classes and

aspects

AR bears the potential to unify classes and aspects with respect to subsequent refine-
ment. An advantage of this view is that several ideas of class refinement can be mapped
directly to aspects, as we will show. But more interesting is the fact that it becomes
possible to refine also aspect-specific structural elements, in particular pointcuts and
advice, which opens new possibilities of aspect reuse and customization.

6.1.1 An Example of Aspect Refinement

Figure 6.1 illustrates the evolution of a program developed using AFMs. The program
contains classes for buffers and sockets as well as aspects for synchronizing concurrent
access to the data structures. The evolution spans four steps shown in four subfigures
(I-IV). Each development step is explained in terms of its Java/Jak/AspectJ code and in
diagram form; refinements of aspects are implemented as subaspects for the time being;
aspect weaving is denoted by dashed arrows.

I. Buffer objects store sets of data items; class Buffer provides the methods put

and get for accessing the stored items.
II. The aspect BufferSync synchronizes the access to the methods put and get of

Buffer by invoking the methods lock and unlock.
III. The class Stack is introduced; in order to synchronize the access to Stack objects,

the aspect StackSync refines the aspect BufferSync. Specifically, StackSync ex-
tends the set of intercepted method executions by push and pop; for that it over-
rides and reuses the pointcut syncPC of aspect BufferSync.

IV. The class Socket is introduced; a Socket object uses several Buffer and Stack

objects. The aspect SocketSync limits the set of synchronized methods to those
that are inside the control flow of Socket, i.e., method executions are synchronized
only when they are initiated directly or indirectly by a Socket object. This is
achieved by overriding the pointcut syncPC and restricting the set of captured join
points via cflow.
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1 class Buffer {

2 Vector <Item > buf = new Vector <Item >();

3 void put(Item e) { buf.add(e); }

4 Item get( int i) { return buf.get(i); }

5 }

Buffer Item (I)

1 abstract aspect BufferSync {

2 pointcut syncPC () :

3 execution(Item Buffer.get( int )) ||

4 execution(void Buffer.put(Item ));

5 Object around() : syncPC () {

6 lock ();

7 Object res = proceed();

8 unlock ();

9 return res;

10 }

11 }

Buffer

Buffer
Sync

Item

(II)

1 class Stack {

2 LinkedList <Item > list = new LinkedList <Item >();

3 void push(Item i) { list.addFirst(i); }

4 Item pop() { return list.getFirst (); }

5 }

6 abstract aspect StackSync extends BufferSync {

7 pointcut syncPC () :

8 BufferSync.syncPC () ||

9 execution(Item Stack.pop()) ||

10 execution(void Stack.push(Item ));

11 }

Buffer

Sync
Stack

Buffer

Sync

Item

Stack

(III)

1 class Socket {

2 void receive () {

3 Buffer buf = new Buffer ();

4 Stack stack = new Stack (); /∗ . . . ∗/
5 }

6 }

7 aspect SocketSync extends StackSync {

8 pointcut syncPC () :

9 StackSync.syncPC () &&

10 cflow(execution(* Socket .*(..)));

11 }

Stack
Sync
Stack

Sync
Socket Socket

Buffer
Sync

ItemBuffer

(IV)

Figure 6.1: Four steps in the evolution of a program using AFMs.
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AR is the

application of

SWD to AOP

This example illustrates the usefulness of refining aspects in a step-wise manner over
several development steps. Aspect refinement is a logical consequence of applying SWD
principles to AOP. The incremental development process makes the evolution of the
program explicit. Design decisions are encapsulated and can be modified in separation
as well as combined and reused in different variants. A reasonable desire is to derive
different customized program variants that share common features and reuse invariant
code. For example, one variant contains only a synchronized buffer:

BasicBuffer = BufferSync • Buffer

another contains a buffer that is synchronized only with respect to calls from Socket:

SocketBuffer = SocketSync • BufferSync • Buffer

and a third contains a buffer that combines the entire functionality:

SocketStackBuffer = SocketSync • StackSync • BufferSync • Buffer

6.1.2 Limited Language-Level Support for Aspect Refinement

Beside the advantages of AR, our example also demonstrates the shortcomings of As-
pectJ in supporting SWD:

Aspect inheritance: Inheritance is known as a concept for reusing and non-invasively
refining software artifacts [Tai96]. Therefore, most AOP languages support aspect
inheritance. Although this enables to refine aspects to some degree, it lacks flexi-
bility to interchange and reuse refinements. Using aspect inheritance, a refinement
(subaspect) is fixed to a specific base aspect. Hence, refinements cannot be com-
bined flexibly in different orderings for customization and adaptation purposes.
For example, we are not able to derive different variants of our buffer example
without changing code invasively.

Constrained aspect extension: Using traditional aspect inheritance in AspectJ, an as-
pect has to be declared as abstract to be able to be refined. This means that adding
a subaspect requires the programmer to modify the parent aspect. This and simi-
lar requirements1 cause a fundamental problem regarding SWD: implementing an
aspect in a particular development step forces the programmer to decide whether
the aspect will be refined in a later step. Unfortunately, this cannot always be
anticipated by the programmer. Hence, the programmer has a serious dilemma.
Declaring the aspect as abstract makes it necessary to add later at least one con-
crete subaspect. But this may not happen and then the aspect does not work.
If the programmer decides to declare an aspect as concrete (without modifier) he
prevents the later refinement of this aspect.

1 For example, refining a pointcut in AspectC++ requires to declare the parent pointcut as virtual.
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Advice is not first-class: Advice is one of the main mechanisms of AOP [MK03b]. A
piece of advice is invoked implicitly, i.e., it executes code when an associated point-
cut matches. This prevents other advice or methods from invoking it explicitly.
Since advice has no name it cannot be overridden and extended by another piece
of advice, inside a refinement. This prevents reusing and customizing advice code.

Aspects are not functions: A refinement in SWD is modeled as a function [HFC76,
Wir71, Par79, Bax92, BSR04, LHBL06, AL06]. It expects a program as input and
returns a modified program as output. Applying a series of aspects to a program
– which is in fact a series of refinements [LHBL06, LHBC05, AL06] – differs from
this scheme. Potentially, each aspect may affect every artifact of a program no
matter whether it is applied before or subsequently in the evolution of a program
(unbounded quantification). This behavior does not follow a functional approach
and bears some potential errors and misbehavior, as explained in Section 5.6. In
this dissertation we do not address this issue since it has already been explored
and solved in parts by introducing bounded quantification of aspects (cf. Sec. 5.6).
Nevertheless, in Section 6.4 we discuss an interesting consequence of AR with
regard to modeling aspects as functions.

The problems sketched above show that current AOP languages as exemplified by As-
pectJ do not support SWD appropriately at the language level. Consequently, we pro-
pose an alternative approach implementing AR and a set of accompanying language
mechanisms.

6.2 Mixin-Based Aspect Inheritance

mixin

composition

of aspects

In order to support AR at the language level, we introduce the notion of mixin-based
inheritance [BC90] to AOP: mixin-based aspect inheritance explicitly supports SWD at
the language level by introducing mixin capabilities to aspects. Though most aspect lan-
guages, such as AspectJ, support a limited form of aspect inheritance, they do not flexibly
enough to express refinements of aspects and their structural elements. Mixin-based as-
pect inheritance overcomes this limitation by decoupling refinements from base aspects
and providing a set of accompanying language mechanisms for refining independently
all the kinds of structural elements of aspects. Specifically, we provide mechanisms for
refining pointcuts (pointcut refinement) and advice (named advice, advice refinement),
which are tailored to AspectJ-like languages.

We use Jak as archetype for expressing AR at the language level. This emphasizes the
uniformity of classes and aspects with respect to refinement. As with class refinement,
aspect refinement could also be implemented using alternative mechanisms, such as vir-
tual classes or traits. With respect to this issue, we refer to the discussion in Section 5.6.
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Figure 6.2 shows a synchronization aspect (Lines 1-4) and a refinement (Lines 5-21)
extending the aspect. Refinements may introduce new structural elements as well as ex-
tend existing ones, as we will explain soon. They can be applied to abstract and concrete
aspects as well as to other refinements. This eliminates the dilemma of anticipating sub-
sequently applied refinements by declaring base aspects as abstract. Moreover, it allows
a series of refinements to be applied to an aspect in different permutations.

1 aspect Sync {

2 void lock() { /∗ l o c k i n g access ∗/ }

3 void unlock () { /∗ un lock ing access ∗/ }

4 }

5 ref ines aspect Sync {

6 int threads;

7 void lock() {

8 threads ++; Super.lock ();

9 }

10 void unlock () {

11 threads --; Super.unlock ();

12 }

13 pointcut syncPC () : execution(Item Buffer.get( int )) ||

14 execution(void Buffer.put(Item ));

15 Object around() : syncPC () {

16 lock ();

17 Object res = proceed();

18 unlock ();

19 return res;

20 }

21 }

Figure 6.2: Adding members and extending methods via AR.

AR weaving

semantics

Notably, refining aspects is conceptually different from applying aspects. Applying two
aspects modifies the base program in two independent steps. In our example this would
lead to two different instances of the synchronization aspect. Instead, AR results in two
aspect fragments that are merged via mixin composition. That is, an aspect together
with all of its refinements constitutes the final aspect that is woven once to the base
program. Figure 6.3 illustrates this semantics of AR: on the left side there is an aspect
and a set of compatible refinements. Subsequently, the base aspect is composed with
a series of user-selected refinements, which results in a final aspect. This one is then
woven to the base program (right side).

6.2.1 Adding Members and Extending Methods.

A refinement may extend an aspect by adding new members. As shown in Figure 6.2, the
refinement adds a field (Line 6), a pointcut (Lines 13-14), and an advice (Lines 15-20).
Refinements may also extend methods to reuse existing functionality (Lines 7-9 and 10-
12). A method extension usually overrides and calls the parent method (Lines 8,11).
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composed aspect

weavingcomposition

base programbase aspect

set of refinements

class

aspect

aspect

class

class

refinement

refinement

refinement

Figure 6.3: AR composition and weaving semantics.

6.2.2 Pointcut Refinement

A refinement may extend the pointcuts of an aspect. Recall our example aspect that
synchronizes the access to the methods of Buffer (cf. Fig. 6.1). For this aspect we
defined two refinements, an aspect that extends the set of advised join points by all
executions of Stack methods (III), and an aspect that constrains this set to executions
that occur in the control flow of Socket methods (IV). Both aspects were derived using
traditional aspect inheritance. They override the pointcut syncPC, reuse its expression,
and add new pointcut expressions that extend or constrain the set of matched join points.

decoupling

refinements

from base

pointcuts

In AspectJ, pointcuts have to be accessed by their full-qualified name, in our example,
BufferSync.syncPC. Thus, the programmer is forced to hard-wire the aspect to be re-
fined and the subaspect. This tight coupling decreases reusability. Figure 6.4 depicts
the synchronization aspect for Buffer and our refinements regarding Stack and Socket,
but now implemented using mixin-based aspect inheritance. Using Super the program-
mer refers to the parent’s pointcut (base pointcut) without being aware of what actual
sequence of refinements is applied to the base aspect. For example, with traditional
inheritance each refinement would change the final type of the aspect and thus fix the
pointcut refinement to a specific base aspect. With mixin-based inheritance the order is
variable.

semantics of

pointcut

refinement

The semantics of pointcut refinement is as follows: the most refined (specialized) point-
cut in a series of pointcut refinements specifies when connected advice is executed.
Which pieces of advice are executed can be specified all along the refinement chain, i.e.,
in every refinement of an aspect advice may be connected to a pointcut, although the
base pointcut was declared before and refinements to that pointcut subsequently. Fig-
ure 6.5 shows a pointcut that matches a set of join points (dotted arrow), that triggers
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1 aspect Sync { // synchronize Buf fer
2 pointcut syncPC () : execution(Item Buffer.get( int )) ||

3 execution(void Buffer.put(Item ));

4 Object around() : syncPC () {/∗ synchron i za t ion ∗/}
5 }

6 ref ines aspect Sync { // synchronize Stack
7 pointcut syncPC () : Super.syncPC () || execution(* Stack .*(..));

8 }

9 ref ines aspect Sync { // only wi th in c f l ow of Socket
10 pointcut syncPC () : Super.syncPC () && cflow(execution(* Socket .*(..)));

11 }

Figure 6.4: Altering the set of locked methods via pointcut refinement.

a connected advice (dashed arrow), and an advice that advises the selected join points
(dot-dashed arrow). Figure 6.6 demonstrates that refining this pointcut (solid arrow)
alters the triggering mechanism: the most refined pointcut extends the set of matched
join points (dotted arrows) and triggers the advice (dashed arrow), albeit the advice was
defined and connected in the base aspect. After the refinement the advice advised the
extended set of join points (dot-dashed arrows).

aspect Sync {
  pointcut syncPC() : execution(* Buffer.*(..));
  Object around() : syncPC() { ... }
}

triggers

advice

advises
join points

join points
matches

class Buffer {
  void put(Item e) { ... }
  Item get(int i) { ... }
}

classaspect

Figure 6.5: Pointcut-advice-binding.

join points
matches

aspect Sync {
  pointcut syncPC() : execution(* Buffer.*(..));
  Object around() : syncPC() { ... }
}

advises
join points

refines aspect Sync {

}

  pointcut syncPC() : Super.syncPC() ||
execution(* Stack.*(..));

refinement
refines

}

class Stack {
  void push(Item e) { ... }

class

class Buffer {
  void put(Item e) { ... }
  Item get(int i) { ... }
}

class

pointcut
triggers
advice

  Item pop() { ... }

aspect
join points
matches

Figure 6.6: The most refined pointcut triggers connected advice.
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6.2.3 Advice Refinement

Before explaining advice refinement it is necessary to introduce the notion of named
advice.

Named Advice

Named advice is a named element of an aspect. It can be overridden and referred to
from advice inside subsequent refinements.

named advice

= unnamed

advice +

advice

method

Figure 6.7 depicts an aspect for synchronization that contains a named advice (Lines 3-
8). Named advice is defined by a result type (Object), an advice type (around), a
name (syncMethod), an argument list (empty), an exception list (empty), a binding to
a pointcut (syncPC), and an advice body. One can think of named advice as a pair
of unnamed advice and a separate method, which we call advice method. The advice
method contains the whole advice functionality; unnamed advice simply invokes this
method and passes all arguments (Fig. 6.8). The difference is that named advice has
full access to the dynamic context (proceed and join point API). Though named advice
can be implemented differently, this view is helpful for understanding the semantics of
advice refinement.

1 aspect Sync {

2 pointcut syncPC () : execution(* Buffer .*(..));

3 Object around syncMethod () : syncPC () {

4 lock ();

5 Object res = proceed();

6 unlock ();

7 return res;

8 }

9 }

Figure 6.7: An aspect with named advice.

Refining Named Advice

advice

refinement =

method

refinement

As opposed to traditional advice, named advice can be refined in subsequent development
steps. The key idea is to treat named advice in subsequent refinements similarly to a
method. This is possible since named advice has at least a name, a result type, and
an argument list. As mentioned, named advice can be understood roughly as a pair of
unnamed advice and corresponding advice method. Hence, an advice refinement simply
refines the advice method by method overriding, i.e., by defining a method with the
same name and signature as the piece of named advice to be refined.
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1 aspect Sync {

2 pointcut syncPC () : execution(* Buffer .*(..));

3 Object around() : syncPC () {

4 return syncMethod ();

5 }

6 Object syncMethod () {

7 lock ();

8 Object res = proceed();

9 unlock ();

10 return res;

11 }

12 Object proceed() { /∗ invok ing the adv i sed method ∗/}
13 }

Figure 6.8: Implementing named advice as pair of unnamed advice and advice method.

Figure 6.9 depicts an aspect that refines our synchronization aspect by extending its
named advice. The refinement contains an advice method syncMethod (Lines 3-8) that
overrides the parent named advice by counting the number of threads. Since we exploit
method overriding, the refining method must have the same name and the same signature
as the parent advice. The keyword Super is used to refer to the parent advice (Line 4).

1 ref ines aspect Sync {

2 int count = 0;

3 Object syncMethod () {

4 count ++;

5 Object res = Super.syncMethod ();

6 count --;

7 return res;

8 }

9 }

Figure 6.9: Refining named advice.

named advice

with

arguments

Figure 6.10 depicts a more complex example of advice refinement, in which the named
advice has multiple arguments: a logging aspect advises all executions of Item.toString
(Lines 2-3). A reference to the Item object that is called is passed to a named advice
(Lines 4-6) that prints out some logging text (Line 5). Additionally, the named advice
has a second argument, a reference to the resulting String object, which is expressed by
the keyword returning (Line 4)2. Refining named advice subsequently (Lines 10-13),
we introduce an advice method with the same name and the same signature. In our
example the signature is composed of the two advice arguments3.

2 The keyword returning means that the advice is executed only when the method execution ter-
minates without throwing an exception.

3 Advice declares arguments at two positions: (1) behind its name and (2) behind the keywords
returning or throwing.
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1 aspect Logging {

2 pointcut ItemToString(Item i) :

3 execution(String Item.toString ()) && this (i);

4 after LogToString(Item i) returning(String s) : ItemToString(i) {

5 System.out.println("item:" + i + "=" + s);

6 }

7 }

8 ref ines aspect Logging {

9 FileBuffer buf = new FileBuffer("foo");

10 void LogToString(Item i, String s) {

11 Super.LogToString(i, s);

12 buf.write("item:" + i + "=" + s);

13 }

14 }

Figure 6.10: Refining named advice with arguments.

named advice

behaves like

virtual

methods

The semantics of named advice is similar to a virtual method, which passes the control
flow to the most specialized descendant method of the inheritance chain. Mapped to
advice refinement this means that, when the associated pointcut matches, the most
specialized advice method is invoked. Figure 6.11 shows an advice method that refines
a named advice (solid arrow). It is is executed (dashed arrows) when the pointcut
syncPC matches (dotted line). Programmers use Super to navigate the refinement chain
upwards. The root of the refinement chain defines to which pointcut the piece of advice
is bound.

advice

aspect Sync {
  pointcut syncPC() : execution(* Buffer.*(..));

class Buffer {
  void put(Item e) { ... }
  Item get(int i) { ... }
}

class

    ...

    ...
  }
}

refines aspect Sync {

refinement

    ...

    ...
  }
}

    Super.syncMethod();

  Object syncMethod around() : syncPC() {

triggers
advice

join points
matches

join points
advises

  Object syncMethod() {

    Object res = proceed();

aspect

refines

Figure 6.11: Semantics of advice refinement.

accessing the

join point

context in

named advice

An issue that we left out is how to use and access proceed and contextual information
within named advice and its refinements. We made no statement as to which information
of the exposed context of a join point should be visible to descendant advice methods.
This issue arises because programmers may access the context using proceed or runtime
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variables as thisJoinPoint. Thus, one may use information that is not passed explicitly
via the advice interface. The question that arises is: should refinements have unlimited
access to context information and proceed?

access rules We argue that an advice refinement should only be permitted to access those pieces
of context information that are passed via the advice interface, and thus are part
of the advice method signature. This would preclude invoking proceed or accessing
thisJoinPoint from within an advice method. For example, in our logging example
the refinement of the advice accesses only those objects that were passed via the ad-
vice interface. To preserve simplicity and safety the usage of the reflective support for
accessing context information (e.g., thisJoinPoint) is forbidden in advice refinements.
Furthermore, we do not allow named advice to be invoked directly by other advice and
methods – such a mechanism is out of scope of this dissertation and addressed elsewhere
(cf. Sec. 6.4).

6.2.4 Discussion

AR and its implementation via mixin-based aspect inheritance offer the following bene-
fits: they allow a base aspect to be composed with a series of refinements, thus enabling
to customize and reuse aspect code flexibly. Pointcut refinement decouples refinements
from their immediate base aspects, thus enhancing the composability and customization
of the aspect weaving behavior. Advice refinement promotes reuse in the same way as
method extension between classes. Named advice can be reused in different variants of
an aspect, thus supporting the customization of advice code.

At the beginning of this chapter we identified three beneficial use cases for AR, which
we now want to revisit:

1. A programmer applies a refinement to adapt an aspect to the changes made to a
base program. For example, Figure 6.12 shows an aspect that counts the updates
of Buffer objects (Lines 1-7) and a refinement that adapts the aspect to count
also executions of clear (Lines 8-10) that updates the Buffer object state as well;
this is achieved by pointcut refinement (Line 9).

2. A programmer can customize an aspect to react to a changed user requirement.
Suppose a new design decision that requires our UpdateCounter aspect to inform a
listener when an update operation was performed. Figure 6.13 shows a refinement
that implements this design decision using named advice refinement.

3. A programmer can decompose an aspect to decouple it from a specific configuration
of the base program. For example, Figure 6.14 shows an aspect that introduces a
new interface Serializable to a set of target classes (Buffer, Stack). Figure 6.15
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1 aspect UpdateCounter {

2 int count = 0;

3 pointcut updatePC () : execution(void Buffer.put(Item ));

4 after updateCounter () returning: updatePC () {

5 count ++;

6 }

7 }

8 ref ines aspect UpdateCounter {

9 pointcut updatePC () : Super.updatePC () || execution(void Buffer.clear ());

10 }

Figure 6.12: Counting the updates of Buffer objects.

1 ref ines aspect UpdateCounter {

2 UpdateListener listener = null;

3 void setListener(UpdateListener l) { listener = l; }

4 void updateCounter () {

5 Super.updateCounter ();

6 listener.notify ();

7 }

8 }

Figure 6.13: Notify a listener when Buffer objects are updated.

shows the result of decomposing this aspect into a base and two refinements, where
each refinement introduces the interface to one target class. Before composing and
compiling the final program, a programmer or a tool select only those refinements
that target classes that are actually present in the program configuration, e.g.,
when Stack is present then also the according refinement is present (Lines 7-9).

1 aspect Serialization {

2 /∗ . . . ∗/
3 declare parents : (Buffer || Stack) implements Serializable;

4 }

Figure 6.14: Introducing the interface Serializable to Buffer and Stack.

AR improves

reuse and

customization

The use cases discussed have one thing in common: aspect code (i.e., base aspect,
refinements) can be reused in different variants of a program; aspects can be customized
to the specific needs of a programmer or to fit the structure of the base program.

AFMs and ARIt is worth to note that without the notion of AFMs it would be difficult to realize AR.
The layered structure of AHEAD designs assigns to each aspect an enclosing feature
module, which is associated to a development step. This information helps to organize
and compose refinements and their base aspects, which is explained elsewhere [KAS06].

In the context of AFMs, decomposing an aspect into a base aspect and several refine-
ments means decomposing the enclosing AFM into several pieces that are themselves
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1 aspect Serialization {

2 /∗ . . . ∗/
3 }

4 ref ines aspect Serialization {

5 declare parents : Buffer implements Serializable;

6 }

7 ref ines aspect Serialization {

8 declare parents : Stack implements Serializable;

9 }

Figure 6.15: Decomposed Serialization aspect.

AFMs (see Fig. 6.16). Thus the number of AFMs increases but this provides the neces-
sary flexibility to compose different sets of features.

decomposed featurefeature

decomposition

1x aspect
2x refinements

3x AFMs;1x AFM;
1x aspect &

Figure 6.16: Decomposing aspects by decomposing AFMs.

AR as

AHEAD

operator

According to AHEAD’s algebraic model, mixin-based aspect inheritance is simply a
composition operator that is invoked when aspects (and their refinements) of different
development steps are composed. Hence, this aspect composition operator corresponds
to the class composition operator, which composes classes using mixin-based inheritance.

6.3 Tool Support

6.3.1 ARJ

ARJ is a language extension of AspectJ that supports aspect refinement. It has been
implemented during this dissertation project as a modular extension to the abc com-
piler framework [ACH+05]. It extends the abc parser enabling it to recognize our new
syntactical elements and it adds several frontend and backend passes for implementing
a syntax tree transformation. ARJ is implemented to work in concert with the AHEAD
Tool Suite and Jak to integrate AR into AFMs: ARJ expects a feature expression in
form of an AHEAD equation file. AFMs are represented by containment hierarchies
that contain the associated aspects, classes, and refinement files (class and aspect re-
finements). Further details about ARJ are explained elsewhere [KAS06]. The current
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version of ARJ supports all language constructs proposed here. The compiler as well as
several documents and examples can be downloaded from the ARJ Web site4.

6.3.2 FeatureC++

Our FeatureC++ compiler (cf. Sec. 5.5.1) supports a limited form of AR. AspectC++
aspects can be refined (‘refines aspect ...’) by adding members, extending methods,
and refining pointcuts. In the current version of FeatureC++ there is no support for
named advice or advice refinement.

6.4 Related Work

Higher-Order Functions, Pointcuts, and Advice

Aspects are refinements and can be modeled as functions [LHBL06, LHBC05, AL06].
As already explained in Section 5.6, treating aspects as functions helps to avoid several
problems arising from the unbounded quantification of aspects, which are not repeated
here. What is interesting is that in the light of the function model, AR is related to
higher-order functions. A higher-order function expects a function as input and returns
another function as output. Since aspects can be modeled as functions a refinement
of an aspect can be understood as a function that applies to a function, which is a
higher-order function, e.g., R(A)(P ), where P is a program, A is an aspect, and R is
a refinement of A. It remains open how high-order functions fit with current algebraic
models of aspects and features [LHBL06, LHBC05, AL06].

Our notion of aspect refinement is related further to higher-order pointcuts and ad-
vice, discussed by Tucker and Krishnamurthi [TK03]. They integrate advice and point-
cuts into languages with higher-order functions and model them as first-class entities.
Pointcuts can be passed to other pointcuts as arguments. Thus, they can be modified,
combined, and extended. In this respect, our approach of aspect and pointcut refine-
ment is similar. We can combine, modify, and extend pointcuts by applying subsequent
refinements.

Due to the opportunity to refine named advice, we can also modify and extend advice
using subsequent advice. This corresponds to higher-order advice that expects a piece of
advice as input and returns a modified piece of advice. Named advice can be passed to
other advice – usually to advice that refines other (input) advice. Thus, refining advice
is similar to passing a piece of advice to higher-order advice.

4 http://wwwiti.cs.uni-magdeburg.de/iti_db/arj/
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Implementation of Aspect Refinement

As discussed in Section 5.6, refinement can be implemented in different ways, such as
mixins, virtual classes, nested inheritance, or traits. In the context of aspects and AR,
a further possibility arises: an aspect could by refined itself via advice and inter-type
declarations of another aspect. In this case aspects themselves are part of a base program
and the programmer has the choice to refine them via mixins, etc. or aspect weaving.
The answer to the question when to use which refinement mechanism is the same as for
refining classes: in the case of homogeneous and advanced dynamic crosscuts, aspects
are used to refine base aspects; in all other cases, our notion of AR in the form of mixins
or virtual classes is used to refine base aspects.

Unifying Advice and Methods

Using the annotation-based programming style of AspectJ, aspects are implemented as
classes and advice is implemented as method and declared as such via annotation. In this
programming style advice is already named and can be refined by method overriding.
However, it is not obvious how this relates to other mechanisms for refinement, e.g.,
pointcut refinement.

Rajan and Sullivan propose the notion of classpects that combine capabilities of aspects
and classes [RS05]. A classpect associates to each piece of advice a method that is
executed for advising a particular join point. Moreover, classpects unify aspects and
classes with respect to instantiation. Since advice is implemented via methods, it could
be refined. However, the authors of classpects do not make a statement about this nor
about the consequences.

Aspects and Genericity

Several recent approaches enhance aspects with genericity, e.g., Sally [HU03], Generic
Advice [LBS04], LogicAJ [KR06], Framed Aspects [LR04]. This improves reusability
of aspects in different application contexts. Aspect refinement and mixin-based aspect
inheritance provide an alternative way to customize aspects, i.e., by composing a base
aspect and a series of desired refinements. However, ideas on generic aspects can be
combined with our compositional approach, just as generic feature modules combine
AFMs with generics [AKL06].
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AspectJ Design Patterns

Hanenberg and Unland discuss the benefits of inheritance in the context of AOP [HU01,
HS03]. They argue that aspect inheritance improves aspect reuse and propose design
patterns that exploit structural elements specific to AspectJ. Their patterns pointcut
method, composite pointcut, and chained advice suggest to refine pointcuts in subsequent
development steps to improve customizability, reusability and extensibility. Due to its
flexibility, AR can enhance these patterns by simplifying the composition of aspects.
The pattern template advice can be enhanced by the notion of named advice because it
becomes possible to refine advice directly.

Feature-Optionality Problem

In FOP, features may depend on (or interact with) other features that are optional [Pre97,
LBL06]. In order to be reliable with regard to putting in and removing optional fea-
tures, Prehofer proposes to split features into slices, i.e., into a base feature and several
so called lifters [Pre97]. Lifters encapsulate those pieces of code that depend on (and in-
teract with) other features. When composing a program from features, a programmer or
a tool selects for each feature the base feature and those lifters that refer to features that
actually participate in the current configuration. Liu et al. lay an algebraic foundation
for this methodology [LBL06].

Our method of splitting aspects into pieces to resolve dependencies between aspects and
classes of a base program is similar to their approach: our refinements correspond to
lifters, but in the context of AOP.

6.5 Summary

Aspect refinement is the incarnation of SWD in AOP. It follows directly from the inte-
gration of aspects and feature modules. AR unifies classes and aspects with respect to
subsequent refinement. We have illustrated three use cases where AR improves reuse and
customization of aspect code. To introduce the principles of SWD at the programming
language level, we proposed mixin-based aspect inheritance and a set of accompanying
language constructs that facilitate SWD: pointcut refinement, named advice, and advice
refinement.

Though we feel certain that AR is an improvement in reuse and customization capabil-
ities of AOP, as mixins, refinements, and virtual classes are to OOP, in Chapter 7 we
evaluate the notion of AR by means of a non-trivial case study.
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CHAPTER 7

Case Study: A Product Line for Peer-to-Peer

Overlay Networks

This chapter shares material with the GPCE’06 paper ‘When to Use Features
and Aspects? A Case Study’ [AB06].

This chapter demonstrates the practical applicability of AFMs and AR to a medium-
sized case study. Furthermore, we address the interesting and fundamental issue, which
arises from the previous two chapters: when should a programmer use feature-oriented
mechanisms (i.e., classes, virtual classes, and mixins) and when should aspect-oriented
mechanisms (i.e., introductions, pointcuts, and advice) be used to implement features
of a product line? That is, how do our programming guidelines perform in a non-trivial
software project? Our case study gives answers, provides a set of supporting statistics,
and reveals open issues.

7.1 Overview of P2P-PL

We use a product line for peer-to-peer overlay networks (P2P-PL), which was imple-
mented by the author [BAS05, AB05b, AB05a]. Beside the basic functionality as routing
and data management in a P2P network [ATS04], P2P-PL supports several advanced
features, e.g., query optimization based on flexible routing path selection [AB05b], meta-
data propagation for the continuous exchange of control information among peers [BAS05],
incentive mechanisms to counter peers that misbehave (free riders) [BB06]. Numerous
experiments concerning these features demanded many different configurations to make
statements about their specific effects, their variants, and combinations [BAS05]. Hence,
P2P-PL seemed to be a good test case for AFMs and AR.
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fine-grained

design

P2P-PL has a fine-grained design. It follows the principle of evolving a design by starting
from a minimal base and applying incrementally minimal refinements to implement
design decisions [Par79]. In its current state, it consists of 113 end-user visible features,
categorized into several subdomains. An end-user visible feature is an increment in
program functionality that users (in case of P2P-PL the author is the user) feel is
important in describing and distinguishing programs within a product line.

Figure 7.1 depicts the first two levels of the organizational structure of P2P-PL. The set
of features is divided into features of plain P2P systems (P2P), of distributed hash tables
(DHT ) – a special kind of P2P system [ATS04], of content-addressable networks (CAN )
– a special kind of DHT [RFH+01], and features for experimental purposes (Exp). The
subdomains are subdivided as well. The number behind each subdomain refers to the
number of features contained in the subdomain, e.g., subdomain Peers contains four
features. The actual features are not shown because of their large number.
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Figure 7.1: The organizational structure of P2P-PL.

implementation P2P-PL was implemented using the AHEAD Tool Suite (ATS) and ARJ. As explained
in Sections 5.5.2 and 6.3.1, the ATS served for implementing feature modules and ARJ
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for composing and weaving aspects within feature modules. The code base of P2P-PL
is approximately 6.4 thousand lines of source code, distributed over 113 features.

7.1.1 Aspectual Feature Modules in P2P-PL

14 of the 113 end-user visible features of P2P-PL (12%) use aspects (see Tab. 7.1);
the remaining 99 features were implemented as traditional feature modules – without
aspects. To give the reader an impression of how aspects and mixins have been combined
in P2P-PL, we explain two simplified examples of AFMs.

aspect description

responding sends message replies automatically
forwarding forwards messages to adjacent peers
message handler base aspect for message handling
pooling stores and reuses open connections
serialization prepares objects for serialization
illegal parameters discovers illegal system states
toString introduces toString methods to several classes
log/debug a mix of logging and debugging
dissemination piggyback meta-data propagation
feedback generates feedback by observing peers
query listener waits for query response messages
command line provides command line access
caching caches peer contact data
statistics collects and calculates runtime statistics

Table 7.1: Aspectual Mixin Layers used in P2P-PL.

Feedback Generator

feedback

counters free

riders

The feedback generator feature is part of an incentive mechanism for penalizing free
riders – peers that profit by the P2P network but do not contribute adequately [BB06].
A feedback generator feature, on top of a peer implementation, identifies free riders by
keeping track of whether other peers respond adequately to messages. If this is not the
case, an observed peer is considered a free rider. Specifically, the generator observes
the traffic of outgoing and incoming messages and traces which peers have responded in
time to posted messages. The generator creates positive feedback to reward cooperative
peers and negative feedback to penalize free riders. Feedback information is represented
by objects of class Feedback and stored in a repository (FeedbackRepository); it is
passed to other (trusted) peers attached to outgoing messages in order to inform them
about free riding. Based on the collected information, a peer judges the cooperativeness
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of other peers. Messages from peers considered free riders are ignored – only cooperative
peers profit by the overall P2P network [BB06].

feedback

generation is

crosscutting

The implementation of the feedback generator crosscuts the message sending and receiv-
ing features. As Figure 7.2 shows, the feedback generator AFM contains an aspect (dark
gray) and introduces four new classes for feedback management. Additionally, it refines
the peer abstraction (by mixin composition) so that each peer owns a log for outgoing
queries and a repository for feedback information.

MessageSender

Feedback
Generator

Feedback Feedback
Repository

QueryLog
Feedback

QueryListener

Peer

Peer

Handler
Feedback

Generator

Figure 7.2: Feedback generator AFM.

While the feedback generator feature implements a heterogeneous crosscut, it relies on
dynamic context information, i.e., it is an advanced dynamic crosscut. Figure 7.3 lists an
excerpt of the aspect FeedbackGenerator. The first advice refines the message sending
mechanism by registering outgoing messages in a query log (Lines 2-7). It is executed
only if the method send was called in the dynamic control flow of the method forward.
This is expressed using the cflow pointcut (Line 5) and avoids advising unintended calls
to send, which are not triggered by the message forwarding mechanism1. The second
advice intercepts the execution of a query listener task for creating feedback (Lines 8-10).

Figure 7.4 lists the refinement of the class Peer implemented as a mixin2. It adds a
feedback repository (Line 2) and a query log (Line 3). Moreover, it refines the constructor
by registering a feedback handler in the peer’s message handling mechanism (Lines 4-7).

AFM

encapsulates

multiple

artifacts

In summary, the feedback generator AFM encapsulates four classes that implement
the basic feedback management, an aspect that intercepts the message transfer, and
a mixin that refines the peer abstraction. Omitting AOP mechanisms would result in
code tangling and scattering since the retrieval of dynamic context information crosscuts

1 The background of using cflow it that the method send is called many times inside a peer, but we
wanted to advise only those executions of send that occur when forwarding a message to another
peer.

2 The actual syntax for constructor refinement in Jak differs slightly [BSR04].
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1 aspect FeedbackGenerator { ...

2 after (MessageSender sender , Message msg , PeerId id) :

3 target(sender) && args(msg , id) &&

4 ca l l (boolean MessageSender .send(Message , PeerId )) &&

5 cflow(execution(boolean Forwarding.forward (..))) &&

6 i f (msg instanceof QueryRequestMessage )

7 { /∗ . . . ∗/ }

8 after (QueryListener listener) : target(listener) &&

9 execution(void QueryListener .run())

10 { /∗ . . . ∗/ }

11 }

Figure 7.3: Feedback generator aspect (excerpt).

1 ref ines class Peer {

2 FeedbackRepository fr = new FeedbackRepository ();

3 QueryLog ql = new QueryLog ();

4 Peer() {

5 Super();

6 FeedbackHandler fh = new FeedbackHandler ( this );

7 this .getMessageHandler (). subscribe(fh);

8 }

9 }

Figure 7.4: Feedback management refinement of the class Peer.

other features, e.g., clients of the message forwarding mechanism. On the other hand,
implementing this feature as one standalone aspect would not reflect the structure of the
P2P-PL framework that includes feedback management. All would be merged in one or
more aspect(s) that would decrease program comprehension. Our AFM encapsulates all
contributing elements coherently as a collaboration that reflects the intuitive structure
of the P2P-PL framework we had in mind during its design.

Connection Pooling

reusing open

connections

The connection pooling feature is a mechanism to save time and resources for frequently
establishing and shutting down connections. To integrate connection pooling into P2P-
PL, we implemented a corresponding AFM. Figure 7.5 shows this AFM consisting of the
aspect Pooling and the class Pool. The aspect intercepts all method calls that create
and close connections3. The pool stores open connections.

Figure 7.6 lists the pooling aspect; it uses a pool for storing references to connections
(Line 2). The pointcuts close (Lines 3-4) and open (Lines 5-6) match the join points
that are associated to shutting down and opening connections. Named advice putPool

(Lines 7-9) intercepts the shutdown process of connections and instead stores the associ-
ated ClientConnection objects in a Pool object. Named advice getPool (Lines 10-13)

3 Note that this is not ideally visualized because the calls are intercepted at the client side.
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Connection
Pooling

Pool

Peer

Pooling

Connection

Figure 7.5: Connection pooling AFM.

recovers open connections (if available) and passes them to clients that request a new
connection. This aspect makes use of the built-in pointcut this to limit the advised
calls to those that originate from MessageSender objects.

1 aspect Pooling {

2 stat ic Pool pool = new Pool ();

3 pointcut close(ClientConnection con) :

4 ca l l (void ClientConnection.close ()) && target (con) && this (MessageSender );

5 pointcut open(ClientSocket socket) :

6 ca l l (ClientConnection.new(ClientSocket )) && args(socket) && this (MessageSender );

7 Object around putPool (ClientConnection con) : close(con) {

8 pool.put(con); return null ;

9 }

10 ClientConnection around getPool (ClientSocket socket) : open(socket) {

11 i f (pool.empty(socket )) return proceed(socket );

12 return (ClientConnection)pool.get(socket );

13 }

14 }

Figure 7.6: Connection pooling aspect (excerpt).

Why not

using a

feature

module?

Implementing this feature using FOP exclusively would lead to code tangling and scatter-
ing. We would have to modify MessageSender at every place at which the method close

and the constructor of ClientConnection is called. Simply extending both is not pos-
sible since this would affect all calls, not only those that originate from MessageSender.
We solve this problem elegantly using advice that advises calls conditionally, i.e., depen-
dently on the type of the caller, which is an advanced dynamic crosscut.

Furthermore, we did not implement Pool as a nested class within the aspect Pooling to
emphasize that it is regular part of the P2P-PL. We consider it part of the collaboration
of artifacts that implement the feature. Subsequent refinements may extend and modify
the class Pool.

7.1.2 Aspect Refinement in P2P-PL

We used AR to refine 7 of the 14 aspects used in P2P-PL. That is, we decomposed
each of the 7 AFMs with aspects into a base AFM and multiple refinements, where
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each refinement is an AFM itself (cf. Fig. 6.16 in Sec. 6.2.4). We explain two simplified
examples below.

Serialization

feature

dependencies

in P2P-PL

The feature Serialization consists only of one aspect. Figure 7.7 depicts the aspect
Serialization tailored for a fully-configured P2P system. It enumerates a list of
declare parent statements that add the interface Serializable to a set of target
classes4. The key thing to note here is that the list of declared parents depends on
the set of features that are in a P2P system. This means that, if the feedback gener-
ator feature is not present in a target P2P system, the statement declare parents:

Feedback in Figure 7.7 would need to be removed from the Serialization aspect,
otherwise a warning would be reported (because there would be no Feedback class)5.
The same holds for PeerId, Contact, Key, and DataItem. Thus, the definition of the
Serialization aspect depends on other features that are present in a target system
(according to Sec. 6.2.4, it is an instance of use case 3).

We model the synthesis of a customized Serialization aspect by refining a base aspect.
That is, we apply AR to break apart the Serialization aspect into smaller pieces – a
base aspect + a series of refinements – to synthesize a system-specific Serialization

aspect.

1 aspect Serialization {

2 declare parents : Message implements Serializable;

3 declare parents : PeerId implements Serializable;

4 declare parents : Contact implements Serializable;

5 declare parents : Key implements Serializable;

6 declare parents : DataItem implements Serializable;

7 declare parents : Feedback implements Serializable;

8 ...

9 }

Figure 7.7: Serialization aspect (excerpt).

Figure 7.8 lists the decomposed Serialization aspect, i.e., a base Serialization

aspect and a set of refinements (merged in one listing). Each refinement introduces the
Serializable interface to only one target class. This enables programmers to choose
only those pieces (refinements) that are required for a particular configuration of P2P-
PL. For example, the refinement that targets the class Feedback (Lines 10-12) is included

4 This particular aspect could also be implemented by enumerating all target classes in
a logical expression, e.g., ‘declare parents : (Message || PeerId || ... ) implements

Serializable’.
5 Not all aspect compilers will issue warnings; some may issue errors when non-existent classes are ref-

erenced. Our use of AR avoids compiler warnings/errors at the expense of imposing more structure
on synthesized P2P-PL programs.
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only in a program if the feedback generator feature is added as well. How fine-grained
this decomposition should be depends on the flexibility of composing end-user visible
features. In P2P-PL, we split the compound Serialization feature into 12 pieces (1 base
aspect and 11 refinements).

1 aspect Serialization {

2 declare parents : Message implements Serializable;

3 }

4 ref ines aspect Serialization {

5 declare parents : PeerId implements Serializable;

6 }

7 ref ines aspect Serialization {

8 declare parents : Contact implements Serializable;

9 }

10 ref ines aspect Serialization {

11 declare parents : Feedback implements Serializable;

12 } ...

Figure 7.8: Decomposed serialization aspect (excerpt).

Connection Pooling

implementing

design

decisions

Figure 7.6 depicts the Pooling aspect for a basic P2P system. By implementing further
design decisions, the definition of the Pooling aspect changes – use case 2 (cf. Sec. 6.2.4).
Using AR we implemented these design decisions as refinements.

1 ref ines aspect Pooling {

2 pointcut open(ClientSocket sock) : Super.open(sock) &&

3 cflow(execution(void Peer.main (..)));

4 }

5 ref ines aspect Pooling {

6 Object putPool(ClientConnection con) {

7 synchronized(pool) { return Super.putPool(con); }

8 }

9 ClientConnection getPool(ClientSocket sock) {

10 synchronized(pool) { return Super.getPool(sock); }

11 }

12 }

Figure 7.9: Encapsulating design decisions using AR.

Figure 7.9 depicts two refinements (merged in one listing). The first (Lines 1-4) refines
the pointcut open to limit the matched joint points to those that occurs in the control
flow of Peer. This excludes join points associated to helper and experimentation classes
that use ClientConnection objects as well. Pointcut refinement decouples the aspect
refinement from a fixed base aspect and thus increases the flexibility to combine this
refinement with other refinements.
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The second refinement is more sophisticated (Lines 5-12). It refines both advice (putPool,
getPool) with synchronization code to guarantee thread safety. Since the pooling ac-
tivities are implemented via named advice, this refinement adds synchronization code.

7.2 Statistics

In this section, we present statistics on how and when FOP and AOP mechanisms were
used in implementing our P2P product line. These statistics provide insight into the
programming guidelines on mechanism usage, which we discuss in detail in Section 7.3.

7.2.1 Statistics on Used AOP and FOP Mechanisms

We collected the following statistics: (1) the number of implementation mechanisms
used, (2) the lines of code (LOC) associated with these mechanisms, and (3) the LOC
associated with static crosscuts (introductions) and dynamic crosscuts (extending meth-
ods).

Number of Classes, Mixins, and Aspects

number of

aspects sums

to 5%

The base P2P framework contains only 2 classes. A fully-configured P2P system consists
of 127 classes. Thus, refining the base framework into a fully-configured system required
the incremental introduction of 125 classes. In addition to class introductions, there were
120 class refinements implemented as mixins, and 14 aspects were used to modularize
crosscutting concerns. The main point is that we used classes and mixins primarily for
implementing features rather than aspects, which were used only to a minor degree –
about 5% of the overall number of mechanisms for constructing features (Fig. 7.10).

mixins:

130; 48%

classes: 

127; 47%

aspects: 

14; 5%

Figure 7.10: Number of classes, mixins, and aspects in P2P-PL.
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mixins: 

2964; 

46%

classes:

3056; 

48%

aspects:

406; 6%

Figure 7.11: LOC of classes, mixins, and aspects in P2P-PL.

LOC Associated With Classes, Mixins, and Aspects

aspect code

sums up to

6% of the

code base

The overall code base of P2P-PL consists of 6,426 LOC. Of these, 3,056 LOC are asso-
ciated with classes, 2,964 LOC with mixins, and 406 LOC with aspects and refinements
of aspects. These statistics are in line with the numbers given above on the ratio of
implementation mechanism usage. Aspect code sums up to 6% and mixin code to 46%
of the overall code base (Fig. 7.11).

LOC Associated With Refinements and Introductions

dominant

activity of

features is

introduction

1,488 LOC of all mixins and aspects extend existing methods (dynamic crosscuts). Of
these, 374 LOC are associated with AspectJ advice and 1,114 with method extensions
via mixins and overriding. The remaining 4,938 LOC are associated with introductions
of new functionality (static crosscuts). This suggests that the dominant role of features
is to introduce new structures in P2P-PL (77%), rather than extending existing methods
(17%) or advising join points (6%) (Fig. 7.12).

method 

extensions: 

1114; 17%

introductions: 

4932; 77%

advice:

 374; 6%

Figure 7.12: LOC of static and dynamic crosscutting in P2P-PL.
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7.2.2 Statistics on AFMs with Aspects

Number and Properties of Aspects

most aspects

exploit

advanced

AOP

Of the 14 aspects that were used, 6 modularized homogeneous crosscuts (that refined a
set of targets coherently with a single piece of code), 7 aspects implemented advanced
dynamic crosscuts (that access dynamic context information, e.g., cflow), 2 aspects
altered inheritance relationships (that introduce interfaces), and 3 aspects implemented
purely heterogeneous crosscuts (Fig. 7.13)6.

heterogeneous:

3; 17%

declare 

parents:

2; 11%

advanced 

dynamic:

7; 39%

homogeneous:

6; 33%

Figure 7.13: Number of crosscuts implemented by aspects.

In summary, 11 of 14 aspects (79%) exploit the advanced capabilities of AOP. Using
mixins exclusively would result in replicated, scattered, and tangled workarounds, as ex-
plained before. Only 3 aspects implement collaborations that could also be implemented
by traditional feature modules. Section 7.3 explains why in these particular cases using
aspects was appropriate.

Number of Feature-Related Classes and Mixins

With respect to the question of if aspects are used standalone or with other classes and
mixins in concert, we observed that an AFM with one aspect also has 1 to 2 (up to 6)
additional classes and mixins. This demonstrates that AFMs in P2P-PL encapsulate
collaborations of aspects, classes, and mixins, rather than aspects in isolation.

7.2.3 Statistics on Aspect Refinement

As explained in Section 7.1.2, AR is useful for decomposing and refining aspects. Ta-
ble 7.2 lists the decomposed aspects and the number of their refinements. On average,

6 Note that some aspects were counted for more than one category, e.g., homogeneous and dynamic.
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there were 7 refinements per base aspect and 1/2 of all aspects were candidates for de-
composition via AR. While the predominant role of aspect refinement was to add new
structural elements, i.e., advice, pointcuts, methods, fields, we refined only 3 named
advice and 1 pointcut.

decomposed aspect number of refinements

serialization 11
responding 4
toString 12
log/debug 13
pooling 3
dissemination 3
feedback 2

Table 7.2: Aspects decomposed by AR.

7.3 Lessons Learned

7.3.1 Refinements and Aspects – When to Use What?

many

problems

could be

solved by FOP

A central question for programmers is when to use refinements à la FOP and when
to use aspects? What we have learned from our case study is that a wide range of
problems can be solved by using object-oriented mechanisms and FOP. Specifically,
we used FOP for expressing and refining collaborations of classes. Collaborations are
typically heterogeneous crosscuts with respect to a base program. Each added feature
module reflects a subset of the structure of the base program (i.e., a sparse version
of the class hierarchy of the base program [OH92]) and adds new and refines existing
structural elements. As we explained in Chapter 4, a significant body of prior work
advocates this view [VN96c, MO04, LLO03, Ern01, OZ05, Ost02, TVJ+01, EOC06,
TOHSMS99, BSR04, SB02, Ste00, Ste05, Bos99].

using aspects

standalone

was not

appropriate

Using aspects in isolation for implementing collaboration-based designs, as proposed
in [PSR00, HU02, SK03], would not reflect the object-oriented structure we had in
mind during the design of P2P-PL. For example, the peer abstraction of P2P-PL plays
different roles in different collaborations, e.g., with the network driver and with the
data management. Encapsulating these different roles and their collaborations in single
aspects would hinder us and others to recognize and understand the inherent object-
oriented structure and the meaning of these features. In particular, if a collaboration
embraces many roles and they are merged into one (or more) standalone aspect(s), the
resulting code would be hard to read and to understand.
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beneficial use

cases for AOP

Nevertheless, aspects proved to be a useful modularization mechanism. In our study we
learned that they help in those situations where traditional OOP and FOP failed:

1. By using aspects and their pattern-matching and wildcard mechanisms for homo-
geneous crosscuts we could avoid code replication. The aspect-oriented implemen-
tation achieves a 5% code reduction compared to an equivalent object-oriented or
feature-oriented variant.

2. Aspects helped to express advanced dynamic crosscuts in the implementation of
7 features in P2P-PL. Aspects perform better in this respect than FOP because
they provide sophisticated language-level constructs that capture the programmers
intension more precisely and intuitively (e.g., cflow).

statistical

support

Our case study provides statistics on how often AOP and FOP mechanisms are used.
AOP mechanisms were used in 12% of all end-user visible features, because they allowed
us to avoid code replication, scattering, and tangling. However, aspects occupied only
6% of the code base. This is because standard object-oriented mechanisms were suffi-
cient to implement most features (i.e., 94% of the P2P-PL code base). Using AOP for
homogeneous crosscuts we coould achieve a code reduction of 5%.

7.3.2 Borderline Cases

While we understand the above considerations as guidelines for programmers that help
in most situations to decide between aspects and refinement mechanisms like mixins and
virtual classes, we also discovered a few situations where a decision is not obvious.

alternative

implementa-

tion of

homogeneous

crosscuts

We realized that some homogeneous crosscuts could be modularized alternatively by
introducing an abstract base class that encapsulates this common behavior. While this
works, for example, for introducing an integer field for assigning IDs to different types
of messages, it does not work for classes that are completely unrelated, as in the case
of a logging feature. It is up to the programmer to decide if the target classes are
syntactically and semantically close enough to be grouped via an abstract base class.

alternative

implementa-

tion of

heterogeneous

crosscuts

Though our study has shown that a traditional collaboration-based design à la FOP
works well for most features, we found at least one heterogeneous feature for which it
is not clear if an aspect would not be more intuitive. This feature introduces toString
methods to a set of classes. Naturally, each of these methods is implemented differently.
Thus, the feature is a heterogeneous crosscut. However, in this particular case it seems
more intuitive to group all toString methods in one aspect. We believe that this is
caused by the partly homogeneous nature of this crosscut, i.e., introducing a set of
methods for the same purpose to different classes.
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7.3.3 Benefits of Aspect Refinement

AR improved

customizabil-

ity

While the application of AR increased the total number of AFMs in P2P-PL consider-
ably, the fine-grained decomposition of aspects (which results in 48 refinements applied
to 7 aspects) did not only structure the design and implementation of P2P-PL, but it
also increased the configuration space, i.e., the tailored variants that can be derived by
the configuration process. For example, the aspect Serialization has as many variants
as different sets of target classes are possible in P2P-PL (theoretically 210). The aspect
Pooling comes in fewer variants (8) because it has only 3 optional refinements, which
can be combined freely (23).

AR improved

reusability

Beside an improvement in customizability we achieved a better reusability of aspect code
amongst different variants of P2P-PL. In our study, all derivable variants of aspects share
common functionality, thus reusing aspect code. In case of the aspect Pooling, each
of the 8 variants reuses code of the base aspect and of 0 to 2 refinements. On average,
each variant of each of the 7 decomposed aspects reuses code of 1 1/2 aspects and
refinements. This is because, for most aspects, all variants can be freely combined, i.e.,
they are optional and can be applied standalone to their base aspects, in combination
with some other refinements, or in combination with all other refinements.

Finally, it remains to note that we did not find many use cases for advice and pointcut
refinement (3 named advice and 1 pointcut refinement). We believe that this small
number originates from the refactoring approach we chose, i.e., we decomposed each
considered aspect retroactively into a base aspect and several refinements.

7.4 Open Issues

Granularity and Scalability

On average, in P2P-PL each feature is implemented by 56 LOC. Thus, the features
of P2P-PL are very fine-grained. Although, we are not aware of guidelines that tell
programmers what feature granularity is appropriate, this fine-grained approach might
not scale to larger software projects because programmers might get lost in the myriads
of features. One way to address this issue would be to implement coarse-grained features,
e.g., as in [TBD06]. While this solves the problem of limited scalability, it decreases the
potential scenarios a feature can be reused with [Big98]. Remarkably, not aware of
this fact when implementing P2P-PL, we chose intuitively an approach in between. As
explained in Section 7.1, we organized the set of 113 features into a logical tree structure
of subdomains. All these subdomains have counterparts in the domain model of P2P
systems. Those subdomains can be understood as large-scale compound features. Such
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a hierarchical approach might be a trade-off between fine-grained customizability and
scalability.

Code Tangling

During our study a fundamental question emerged: when is an interaction between to
feature modules (e.g., class A calls a method of class B) considered undesirable code
tangling? For example, Figure 7.14 depicts a simplified excerpt of the class Peer that
uses several times the message subsystem for sending messages. We implemented this
interaction via direct method calls from the class Peer to the class MessageSender

(Lines 7,14). Moreover, Peer uses a logging subsystem to log its current state. This is
implemented also via method calls from Peer to Log (Lines 5,8,12,15).

1 class Peer {

2 int id;

3 /∗ . . . ∗/
4 void run() {

5 Log.log("running peer: " + id);

6 /∗ . . . ∗/
7 MessageSender .send(new RequestMessage( this ));

8 Log.log("send request: " + id);

9 /∗ . . . ∗/
10 }

11 void startup () {

12 Log.log("startup peer: " + id);

13 /∗ . . . ∗/
14 MessageSender .send(new StartupMessage( this ));

15 Log.log("send startup notification: " + id);

16 /∗ . . . ∗/
17 }

18 }

Figure 7.14: Peer invokes methods of Log and MessageSender.

What is

undesirable

tangling?

Most programmers would probably agree that the method calls from the class Peer to
the class MessageSender are not undesirable code tangling, but invoking the method
log in the class Log is considered code tangling. That is, the calls to Log should be
moved to an aspect, whereas the calls to MessageSender should remain in Peer. In this
particular case it might be easy to decide, but in other situations it might be unclear
when to factor a collaboration in an aspect and when not. So what is the general rule
for considering a uses-relationship as tangling or as meaningful collaboration?

We believe that the law of demeter of concerns (LoDC) may help in this matter [Lie04].
Informally, it states that a concern should only know about concerns that contribute
to its functionality. Mapped to our problem it is evident that calling methods of
MessageSender is necessary for the operation of Peer, whereas logging is not required.
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Hence, programmers may use the LoDC for deciding when to use aspects and when
collaborations of refinements and classes.

7.5 Related Work

Recent studies have applied and evaluated AOP and FOP by their application to larger
software projects. We review a representative subset.

AOP Case Studies

Colyer and Clement refactored an application server using aspects [CC04]. Specifically,
they factored 3 homogeneous and 1 heterogeneous crosscuts. While the number of
aspects is marginal, the size of the case study is impressively high (millions of LOC).
Although they draw positive conclusions, they admit (but did not explore) a strong
relationship to FOP. This dissertation demonstrates the useful integration of both worlds.

Zhang and Jacobsen refactored several CORBA ORBs [ZJ04]. Using code metrics, they
demonstrate that program complexity could be reduced. They propose an incremen-
tal process of refactoring which they call horizontal decomposition. Liu et al. point
to the close relationship to FOP [LBL06]. Our study confirms that with respect to
the implementation of program features, aspects are too small units of modulariza-
tion [MO04, LLO03].

Coady and Kiczales undertook a retroactive study of aspect evolution in the code of
the FreeBSD operating system (200-400 KLOC) [CK03]. They factored 4 concerns and
evolved them in three steps; inherent properties of concerns were not explained in detail.

Lohmann et al. examine the applicability of AOP to embedded infrastructure soft-
ware [LST+06]. They show that AOP mechanisms, if carefully used, do not impose
a significant overhead. In their study they factored 3 concerns of a commercial embed-
ded operating system; 2 concerns were homogeneous and 1 heterogeneous. They show
that aspects are useful for encapsulating design decisions, which is also confirmed by our
study.

FOP Case Studies

A significant body of research supports the success of FOP in the implementation of
large-scale applications, e.g., for the domain of network software [BO92], databases [BT97,
LAS05, BO92], avionics [BCGS95], and command-and-control simulators [BJMvH02],
to mention a few. The AHEAD tool suite is the largest example with about 80-200
KLOC [BSR04, TBD06]. However, none of these studies make quantitative statements
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about the properties of the implemented features, nor do they evaluate the implemen-
tation mechanisms used with respect to the structures of the concerns. The features
they consider are traditional collaborations with heterogeneous crosscuts, which is in
line with our findings in P2P-PL.

Lopez-Herrejon et al. explore the ability of AOP to implement product lines in a FOP
and SWD fashion [LH06, LHB06]. They illustrate how collaborations are translated
automatically to aspects. They do not address in what situations which implementation
technique is most appropriate nor how the aspects generated affect program comprehen-
sibility.

Xin et al. evaluate Jiazzi and AspectJ for feature-oriented decomposition [XMEH04].
They reimplemented an AspectJ-based CORBA event service [HC02] by replacing as-
pects with Jiazzi units, which are a form of feature modules. They conclude that Ji-
azzi provides better support for structuring software and manipulating features, while
AspectJ is more suitable for manipulating existing Java code in unanticipated ways.
However, they do not examine the structure of the implemented features. Their success
in implementing all features of their case study using Jiazzi feature modules hints that
most of them (if not all) come in form of object-oriented collaborations.

We are not aware of further published studies that take both, AOP and FOP into
account.

7.6 Summary

17% method

extensions;

6% aspect

code

Our conducted study demonstrated the practical applicability of the integration of AOP
and FOP. We observed that the dominant role of features is the introduction of new
structural elements – adding new classes and new members to existing classes. Refine-
ment of existing methods involved a small fraction of features in our case study (17%).
This is in line with prior studies [LH06, LHB06]. Further, while aspects were used in-
frequently (6% of the code base), they enhanced the crosscutting modularity of features
and reduced code replication. That is, using aspects or refinements in isolation would
not have achieved an elegant design or implementation.

Are features

predominantly

collabora-

tions?

The result of our case study is a first data point. Although we cannot generalize of a
single study, we believe this work supports the hypothesis that object-oriented collabo-
rations (expressed by classes and mixins) define the predominant way in which concerns
(features) are implemented, where aspects are useful in expressing homogeneous and
advanced dynamic crosscuts. In the next chapter we address this issue in more depth.

Regarding AR we observed that 1/2 of all aspects in our study could be decomposed to
separate design decisions or to decouple aspects from the details of the base program
(i.e., to synthesize tailored aspects). The composability of aspects and their refinements
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increased the configuration space and facilitated aspect code reuse between aspect vari-
ants, which are tailored to different program contexts.

In summary, our case study provides supporting evidence that our programming guide-
lines can assist programmers in choosing and using the right implementation mechanism
for the right problem. In the next chapter we provide further support for our guidelines
by means of analyzing further studies implemented by others.
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CHAPTER 8

Aspects Versus Collaborations

This chapter shares material with the AOPLE’06 paper ‘On the Structure of
Crosscutting Concerns: Using Aspects or Collaborations?’ [ABR06].

We have shown how integrating AOP and FOP can overcome their individual limitations.
Our case study supports our claims for a particular software project. We observed that
our programming guidelines are reasonable for this example, but also that aspects and
collaborations have been applied to different extents. However, this is only one data
point and furthermore it may be biased – even against our best will.

In this chapter we revisit the question of when to use what mechanism and how imple-
mentation techniques are used today. We formulate a problem statement that serves as
a starting point for our investigations. Subsequently, we present a set of code metrics
for analyzing programs based on AOP. Finally, we apply our metrics to a set of case
studies implemented by others. Based on this, we can make stronger claims about the
issues regarding the current practice of programming with collaborations and aspects.

8.1 Problem Statement: Aspects vs. Collaborations

Aspects and collaborations overlap in their capabilities to solve certain design and im-
plementation problems. Our derived programming guidelines reflect this fact and assist
the programmer in choosing the right programming technique for the right problem:

1. Collaborations are heterogeneous crosscuts and should be abstracted explicitly,
e.g., by feature modules [BSR04] or related mechanisms [OZ05, AGMO06, LLO03,
Her02, TVJ+01, Ost02].
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2. Aspects should be used in the remaining cases, i.e., for homogeneous crosscuts and
advanced dynamic crosscuts.

These guidelines are not arbitrary at all, but were inferred from the individual strengths
of aspects and collaboration abstraction mechanisms. They build on a long line of work
on OOP and collaboration-based designs [RAB+92, GHJV95, VN96c, LLO03, MO04,
SB02, BSR04, MMP89, Ern01, EOC06, OZ05, Ste00, NQM06, NCM04, BDN05, CL01]
and follow the initial idea of AOP, namely to implement only those concerns as aspects
for which the underlying modularization mechanisms fail [KLM+97, EFB01].

AOP filled a

vacuum

However, we are aware that although the concept of collaborations predates AOP by
quite some time, mainstream OOP languages have been slow in supporting these con-
structs. AOP has filled the vacuum and offered some programming mechanisms that
remain controversial [Lie04, Ste06, Ale03] and that may lead to serious penalties, e.g.,
unpredictable program behavior [MA05, DFS04, LHBL06], weak modularity [GSF+05,
GSC+03] and decreased evolvability [Lie04, LHBL06, GB03]. Furthermore, the weak
support of collaborations and related mechanisms (e.g., virtual classes [MMP89, EOC06,
OZ05], mixins [BC90, SB02], nested inheritance [NCM04, NQM06], classboxes [BDN05])
has contributed to a confusion regarding their relationship to crosscutting concerns,
which we have addressed in Chapter 3.

Do aspects

implement

collabora-

tions?

The aim of this chapter is to explore whether aspects used today really implement
AOP-specific problems or implement in fact collaborations, which could have been im-
plemented by languages that support collaborations. With the advent of languages that
support collaborations (e.g., Scala [OZ05], Jiazzi [MFH01], Jx [NCM04], J& [NQM06],
Classbox/J [BDN05], Jak [BSR04], ContextJ [CHdM06], Lasagne/J [TVJ+01], Cae-
sarJ [AGMO06], Aspectual Collaborations [LLO03], Object Teams [Her02], Aspectual
Feature Modules) the question of whether and how aspects should be replaced by collab-
oration abstraction mechanisms arises. Furthermore, we are interested in which design
and implementation problems remain for aspects – beyond collaborations.

To answer these questions we have analyzed a set of AspectJ programs. In order to
quantify the application of aspects we propose a set of code metrics for aspect-oriented
programs.

8.2 Metrics

A software metric is a measure of some property of a piece of software or its specifi-
cation. The metrics we propose target exclusively the issues discussed above, namely
the question in which of our two categories (collaboration or not) a given aspect falls.
Specifically, we are interested in the following metrics:
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◦ What fraction of a program’s code base is occupied by classes, interfaces, and
aspects?

◦ What fraction of inter-type declarations and advice is heterogeneous and homoge-
neous?

◦ What fraction of advice is basic and advanced?

The metrics are quantified by the number of occurrences (NOO) of a certain software
artifact and/or the lines of code (LOC) associated with it.

Classes, Interfaces, and Aspects (CIA)

This metric determines the NOO of classes, interfaces, and aspects, as well as the LOC
associated with them. It tells us whether the number of aspects (as opposed to classes
and interfaces) is a small or a large fraction of the modularization mechanisms used in a
program, and whether aspects implement a significant or only a small part of the code
base. However, the CIA metric does not tell us how aspects are used, e.g., how often
advanced advice is used in an aspect as opposed to basic advice and methods. This is
where further metrics come into play.

Heterogeneous and Homogeneous Crosscuts (HHC)

The HHC metric explores to what extent aspects implement homogeneous and het-
erogeneous crosscuts. Specifically, we determine the fraction of advice and inter-type
declarations that implement heterogeneous and homogeneous crosscuts (NOO) and the
fraction of the code base that is associated with them (LOC). The HHC metric tells us
whether the implemented aspects take advantage of the wildcard and pattern-matching
mechanisms of AOP (homogeneous crosscuts) or merely emulate OOP mechanisms (het-
erogeneous crosscuts).

Basic and Advanced Dynamic Crosscuts (BAC)

The BAC metric determines the NOO of pieces of basic and advanced advice and the
overall LOC associated with them. This metric tells us to what extent the aspects of a
program take advantage of the advanced capabilities of AOP for implementing dynamic
crosscuts. Basic advice can be implemented as method extensions via overriding.
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8.2.1 Analyzing AspectJ Programs

As our metrics are language-independent, we now explain how to collect statistics for
AspectJ programs.

CIA Metric

Collecting data for the CIA metric is straightforward: we simply traverse all source
files included in a given project and count the NOO and LOC of aspects, classes, and
interfaces. Upfront we eliminate blank lines and comments.

HHC Metric

Homogeneous crosscuts affect multiple join points by applying identical code. Typi-
cally this can be recognized syntactically by advice and inter-type declarations that
have wildcards (i.e., *, +, and ..) and disjunctions (e.g., ‘execution(/*...*/) ||
execution(/*...*/)’ or ‘declare parents : (Line || Point) implements Shape’).
Furthermore, advice is considered homogeneous that does not qualify a target method
or field completely, e.g., by omitting the declaring type: ‘execution(void print())’.
All remaining pieces of advice and inter-type declarations are considered heterogeneous.

BAC Metric

We consider all pieces of advice as advanced except those associated with call1 and
execution and that are not combined with any other pointcuts, except with target

and args2. This is an overestimation: it might consider some pieces of advice advanced
that is not, but not vice versa. However, our studies show that this does not affect the
results, since we found very few pieces of advanced advice, even with this overestimation.
The remaining advice is considered basic.

8.2.2 AJStats: A Statistics Collector for AspectJ Programs

For collecting statistics of AspectJ programs we developed a tool, called AJStats3. The
core of AJStats is an AspectJ parser that is generated by means of a JavaCC grammar,

1 Although the semantics of call is to advise the client side invocations of a method, it can be
implemented as method extension – provided that all calls to the target method are advised.

2 The pointcut execution can be combined also with the pointcut this.
3 http://wwwiti.cs.uni-magdeburg.de/iti_db/ajstats/
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borrowed from [FLG06]. AJStats analyzes AspectJ programs and collects the following
data (measured in NOO and LOC):

◦ classes, aspects, interfaces (distinguishes between top-level and nested)
◦ methods, constructors, fields (distinguishes between classes, interfaces, and as-

pects)
◦ pointcuts, advice
◦ inter-type declarations (field, methods, constructors, others)

AJStats does not identify homogeneous and advanced dynamic crosscuts. In order to
do so one has to examine the code by hand.

Figure 8.1 shows a screen snapshot of the output of AJStats after analysis of an arbitrary
AspectJ program.

8.3 Case Studies

There are not many published, non-trivial studies on AspectJ in the open literature.
We analyze a diverse selection of small-sized, medium-sized, and large-sized programs
that we were able to locate. We did not include P2P-PL and other programs of our own
because we did not want to bias the results.

8.3.1 Overview of the Analyzed AspectJ Programs

The first 5 case studies are small and medium-sized AspectJ programs (< 20 KLOC);
the last 3 are large-sized AspectJ programs (> 20 KLOC).

Tetris: The Game

Tetris is the implementation of the popular game in AspectJ. It was developed at the
Blekinge Institute of Technology in Sweden. The source code is available publicly at the
project Web site4. The code base of Tetris is 1,030 LOC. It implements features such as
a GUI, various game levels, or block management.

OAS: An Online Auction System

OAS (Online Auction System) is a system that allows people to negotiate the purchase
and sale of goods in the form of English-style auctions (over the Internet). OAS was

4 http://www.guzzzt.com/coding/aspecttetris.shtml
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Figure 8.1: AJStats Screen Snapshot.
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developed from scratch using AspectJ at the Lancaster University. The source code was
released kindly by Awais Rashid. The code base of OAS is 1,623 LOC. OAS does not
employ a special notion of features. Nevertheless it factors functionality such as a GUI,
serialization, as well as auction, user, and bidding management.

Prevayler: Transparent Persistence for Java

Prevayler is a Java application that implements transparent persistence for Java ob-
jects. It is a fully functional main memory database system in which business objects
may persist. Prevayler was refactored by the University of Toronto using AspectJ and
horizontal decomposition [GJ05, ZJ04]. Successively, a series of features has been de-
tached and encapsulated into aspects. Example features are persistence, transaction,
query, and replication management. The refactored AspectJ source code is available
at the project Web site5. The code base of Prevayler is 3,964 LOC subdivided into 18
features.

AODP: Aspect-Oriented Implementation of the GoF Design Patterns

AODP (Aspect-Oriented Design Patterns) is an AspectJ implementation of the GoF
(Gang-of-Four) design patterns [GHJV95], implemented at the University of British
Columbia [HK02]. The programmers of AODP restructured several design patterns
using AspectJ and separated the reusable parts of aspects and classes. The AspectJ im-
plementation can be obtained at the project Web site6. The overall code base consists of
3,995 LOC subdivided into 23 features, which are the different design pattern instances.

FACET: An Aspect-Based CORBA Event Channel

FACET (Framework for Aspect Composition for an EvenT channel) is an AspectJ imple-
mentation of a CORBA event channel, developed at the Washington University [HC02].
The source code is available publicly at the project Web site7. The goal of the FACET
project is to investigate the development of customizable middleware using AOP. FACET
implements a real-time event channel in Java and AspectJ, modeled after the TAO Real-
time Event Channel [SLM98]. The code base of FACET is 6,364 LOC subdivided into
34 features. Features in FACET are for example different event types, synchronization,
a CORBA core, or tracing.

5 http://www.msrg.utoronto.ca/code/RefactoredPrevaylerSystem/
6 http://www.cs.ubc.ca/˜jan/AODPs/
7 http://www.cs.wustl.edu/˜doc/RandD/PCES/facet/
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AJHotDraw: A 2D Graphics Framework

AJHotDraw is an aspect-oriented refactoring of the JHotDraw two-dimensional graphics
framework. It is an open source software project hosted by the SourceForge.net open
source development Web portal. The code is publicly available at the AJHotDraw project
Web site8. The code base of AJHotDraw is 22,104 LOC. It provides numerous features
for drawing and manipulating graphical, planar objects.

Hypercast: A Multicast Overlay Network Protocol

Hypercast is an implementation of a protocol for multicast overlay network communica-
tion. It was developed at the University of Virginia in cooperation with the Microsoft
Corporation [LB99]. The original object-oriented implementation was refactored using
AspectJ and crosscutting interfaces [GSS+06]. The source code was released kindly by
Yuanyuan Song and Kevin Sullivan. The code base of the aspect-oriented implemen-
tation of Hypercast is 67,260 LOC. Example features of Hypercast are different base
protocols (UDP, TCP, HTTP), encryption, or message handling.

Orbacus: A CORBA Middleware Framework

Orbacus is a mature CORBA-compliant middleware product that has been deployed by
IONA Technologies9. It has been used successfully in mission-critical systems in the
telecommunications, finance, government, defense, aerospace and transportation indus-
tries. We consider the AspectJ-based version of Orbacus (a.k.a. Abacus) developed by
refactoring at the University of Toronto [ZJ04, ZGJ05]. The source code was released
kindly by Charles Zhang and Hans-Arno Jacobsen. The code base of the AspectJ version
of Orbacus is 129,897 LOC. Orbacus is a complex software with numerous features, e.g.,
dynamic invocation interface, event handling, encoding conversation.

8.4 Statistics

We used AJStats for collecting the statistics. We identified homogeneous advice and
inter-type declarations as well as advanced advice by hand, i.e., we examined the code
manually. This method revealed an interesting issue: we identified advice and inter-type
declarations that have patterns and wildcards in their pointcut expressions but that do
not affect multiple join points. For example, advice ‘after() : call(* foo(..))’ is

8 http://sourceforge.net/projects/ajhotdraw/
9 http://www.orbacus.com/
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Tetris OAS Prevayler AODP
NOO LOC NOO LOC NOO LOC NOO LOC

features / code base 6 1030 1 1623 18 3964 23 3995
classes + interfaces 9 818 21 1283 107 2739 244 3241
aspects 8 212 9 340 55 1225 41 754
java fields 81 81 64 64 149 149 149 149
java methods 47 583 149 1042 338 1779 432 2010
java constructors 7 116 37 137 83 351 76 334
aspect fields 17 17 20 20 24 24 16 16
aspect methods 1 11 6 78 1 3 39 205
aspect constructors 0 0 0 0 0 0 0 0
itd fields 0 0 0 0 27 27 2 2
itd methods 0 0 2 15 65 266 41 182
itd constructors 0 0 0 0 7 34 0 0
itd declare 2 2 8 8 23 23 37 37
advice 21 145 20 141 106 518 15 94
hom. advice 0 0 15 61 10 52 5 50
hom. itds 2 2 8 8 3 7 7 7
advanced advice 2 12 4 25 30 136 3 30
basic advice 19 133 16 116 76 382 12 64
het. crosscuts 21 145 7 95 215 809 83 258

FACET AJHotDraw Hypercast Orbacus
NOO LOC NOO LOC NOO LOC NOO LOC

features / code base 34 6364 13 22104 10 67260 30 129897
classes + interfaces 181 5143 351 21909 328 67142 1894 118938
aspects 113 1221 10 195 12 118 125 10959
java fields 198 198 712 712 2691 2691 3180 3180
java methods 340 2936 2850 15937 3122 52130 7659 89642
java constructors 88 375 356 1461 383 6879 1447 7219
aspect fields 3 3 0 0 8 8 33 33
aspect methods 57 187 0 0 0 0 19 139
aspect constructors 0 0 0 0 0 0 2 16
itd fields 22 22 1 1 0 0 63 63
itd methods 52 229 20 121 0 0 460 4036
itd constructors 3 12 0 0 0 0 0 0
itd declare 34 34 10 10 0 0 4 4
advice 49 297 5 19 8 27 289 4748
hom. advice 4 16 3 11 8 27 14 209
hom. itds 8 8 1 6 0 0 0 0
advanced advice 11 110 3 12 2 8 53 488
basic advice 38 187 2 7 6 19 236 4260
het. crosscuts 148 570 32 134 0 0 802 8642

Table 8.1: Collected data of the analyzed case studies.
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formally a homogeneous advice but if there is only one method foo in the base program
it is in fact heterogeneous. We address this issue in more depth in Section 8.5.

Table 8.1 lists the data we collected from the AspectJ programs. Especially, interesting
for our analysis are the rows classes + interfaces, aspects, hom. advice, hom. itds, and
advanced advice. In the following paragraphs we discuss the data in depth.

CIA Metric

Since the projects analyzed are of different size (1 KLOC – 130 KLOC) the number of
classes, interfaces, and aspects varies as well. The spectrum of the number of classes and
interfaces ranges from 9 to 1,894 and the number of aspects from 9 to 125. The LOC of
classes and interfaces ranges from 818 to 118,938 LOC and the LOC of aspects from 118
to 10,959 LOC. Figure 8.2 illustrates that AOP has been used to different extents (0.2%
to 31% of the code bases). Especially in the small-sized and medium-sized projects (<
20 KLOC) aspects occupy a significant part of the code base (19% – 31%); in the larger
projects (> 20 KLOC) aspects occupy a smaller fraction (0.2% – 8%).

classes +
interfaces

aspects

Tetris 79.4 % 20.6 %
OAS 79.1 % 20.9 %
Prevayler 69.1 % 30.9 %
AODP 81.1 % 18.9 %
FACET 80.8 % 19.2 %
AJHotDraw 99.1 % 0.9 %
Hypercast 99.8 % 0.2 %
Orbacus 91.6 % 8.4 %
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Figure 8.2: NOO and LOC of classes, interfaces, and aspects.

HHC Metric

Homogeneous crosscuts have been used in the analyzed programs to different extents:
the spectrum ranges from 2 to 209 LOC associated with homogeneous advice and inter-
type declarations. That is, we found 0.04% to 4.3% of the code base implementing
homogeneous crosscuts (Fig. 8.3). Note that the 4.3% comes from the second smallest
program (OAS). We revisit this issue in Section 8.5.

In contrast to homogeneous crosscuts, we found 0 to 8,642 LOC implement heterogeneous
advice and inter-type declarations, which are 0% to 20% of the code base.
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heterogeneous homogeneous

Tetris 14.1 % 0.2 %
OAS 5.9 % 4.3 %
Prevayler 20.4 % 1.5 %
AODP 6.5 % 1.4 %
FACET 9.0 % 0.4 %
AJHotDraw 0.6 % 0.1 %
Hypercast 0.0 % 0.04 %
Orbacus 6.7 % 0.2 %
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Figure 8.3: NOO and LOC of heterogeneous and homogeneous crosscuts.

BAC Metric

Advanced dynamic crosscuts have been used to different extents in the analyzed AspectJ
programs. The spectrum ranges from 8 to 488 LOC, which sums up to 0.01% to 3.4%
(Fig. 8.4). The highest percentage comes from Prevayler, a mediums-sized program.

In contrast to advanced advice, we found 7 to 4,260 LOC implement basic advice, which
sums up to 0.03% to 13% of the code base.

basic
advice

advanced
advice

Tetris 12.9 % 1.2 %
OAS 7.1 % 1.5 %
Prevayler 9.6 % 3.4 %
AODP 1.6 % 0.8 %
FACET 2.9 % 1.7 %
AJHotDraw 0.03 % 0.1 %
Hypercast 0.03 % 0.01 %
Orbacus 3.3 % 0.4 %
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Figure 8.4: NOO and LOC of basic and advanced advice.
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8.5 Discussion

advanced

AOP vs.

collaborations

Figure 8.5 depicts the fractions of the code base of the AspectJ programs analyzed by us
that demand advanced AOP mechanisms and that require only OOP and collaboration
abstraction mechanisms. Note that the fractions that require AOP are not calculated
by simply adding the code associated with homogeneous advice & inter-type declara-
tions and advanced advice together. This is because sometimes advanced advice is also
homogeneous (e.g., ‘after() returning: call(* foo(..)) && cflow(execution(*

bar(..))’).

collaborations advanced
AOP

Tetris 98.6 % 1.4 %
OAS 94.5 % 5.5 %
Prevayler 95.1 % 4.9 %
AODP 98.4 % 1.6 %
FACET 97.9 % 2.1 %
AJHotDraw 99.9 % 0.1 %
Hypercast 99.96 % 0.04 %
Orbacus 99.5 % 0.5 %
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Figure 8.5: Fractions of code that require (1) advanced AOP and (2) OOP and collabo-
ration abstraction mechanisms.

In summary, the spectrum of the fractions of the code base that exploits advanced
AOP mechanisms ranges from 0.04% to 5.5%, where the small-sized and medium-sized
programs have the largest fractions (1.4% – 5.5%) and the large-sized programs have
the smallest fractions (0.04% – 0.5%).

Interpretation of the Data

2% of the

code exploits

advanced

AOP

A major insight gained from the statistics is that only a minor fraction of the code
base (on average 2%) of the analyzed AspectJ programs exploits the advanced capabilities
of AOP, i.e., homogeneous and advanced dynamic crosscuts. This also means that on
average 98% of the code base implements collaborations.

the larger the

code base, the

lesser AOP is

been used

A further interesting outcome is that there seems to be a correlation between the extent of
advanced AOP in a program and the size of its code base. In our analyzed programs, we
observed that the larger the code base, the smaller the fraction of advanced AOP. While
the small-sized and medium-sized programs (< 20 KLOC) use some AOP mechanisms
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(on average 3%), the large-sized programs (> 20 KLOC) virtually do not make any use
of advanced AOP (on average 0.2%).

three

suspicions

These statistics suggest that the impact of advanced AOP mechanisms decreases as the
program size increases. Large programs use virtually no advanced AOP but exclusively
OOP and collaborations. Though we have no definitive answer to the question of why
there is an inversely proportional correlation between program size and impact of AOP,
we have three suspicions:

1. The impact of AOP in large-sized programs is negligible because it is certainly
harder to understand a large-sized program than a small-sized program. This cir-
cumstance may be responsible for why the programmers were not able to discover
homogeneous and advanced dynamic crosscuts in large-sized programs. Tool sup-
port for discovering aspects automatically could help to assist the programmer, e.g.,
aspect mining tools [BK04, MvDM04, TC04] and clone detection tools [BvDvET05,
LLM06, BYM+98, FR99, LPM+97, Bak95].

2. The impact of AOP in large-sized programs is negligible because these programs
have not been developed with AOP in mind. All of them have been constructed via
a refactorization of object-oriented code into aspect-oriented code. It may be that
the programmers simply stopped using AOP after having detached a reasonable
number of aspects. Thus, the ratio of aspect code and object-oriented code differs
in small-sized and large-sized programs. The development of aspect-oriented large-
sized programs from scratch might confirm this conjecture.

3. The impact of AOP in large-sized programs is negligible because the design and
implementation problems that occur in large-sized programs are predominantly
collaborations. This could be explained by the sheer complexity of these problems
that is incompatible with the generic character of homogeneous crosscuts. That
is, it is really hard to find problems in large-sized programs that affect many join
points and that do the same thing at all points. The same might be true for
advanced dynamic crosscuts.

Code reduction

AOP reduces

code

replication

We have argued that aspects are useful for reducing code replication in a program.
Imagine an aspect that advises 100 join points and executes at each join point 10 lines
of code encapsulated in one piece of advice. Compared to an OOP equivalent, this
aspect would reduce the code size by approximately 990 lines of code. This benefit is
not reflected in our metrics and statistics. An aspect-oriented program may have only
a few pieces of advice and reduce code replication significantly.
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In order to explore this issue, we analyzed for all the considered AspectJ programs, the
reduction of code replication achieved by using aspects for modularizing homogeneous
crosscutting concerns.

code reduction

Tetris 0.0 %
OAS 22.0 %
Prevayler 2.7 %
AODP 1.7 %
FACET 7.7 %
AJHotDraw 0.2 %
Hypercast 0.1 %
Orbacus 0.5 %
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Figure 8.6: Code reduction achieved by using AOP.

small-sized vs.

large-sized

programs

Figure 8.6 shows different degrees of code reduction achieved by using AspectJ instead
of Java in the analyzed programs. In OAS the code size is reduced by 22% compared
to an OOP equivalent; in FACET a reduction of 7.7% has been achieved; all other code
reductions are 3% and below. It is interesting that the second smallest program achieves
the highest degree of code reduction (OAS; 22%). However, the ability of AOP to the
reduce code decreases as the program size increases. While we observed a significant code
reduction (on average 7%) in the small-sized and medium-sized programs, we observed
almost no reduction (on average 0.3%) in the large-sized programs.

impact on

large-sized

programs

The reason why the benefit of using AOP in large-sized programs is so marginal might
be that aspects have not been used to the same extent as in small-sized programs. When
the impact of aspects in large-sized programs increases then it is reasonable to expect a
reduction of code replication – similar to the one in small-sized programs (7%).

4% code

reduction

through AOP

Nevertheless, the observed code reduction of on average 4% confirms our programming
guidelines: use AOP for homogeneous crosscuts because you can avoid code replication.
Though 4% may seem to be a marginal benefit, it has been observed that any kind of
code replication may lead to serious maintenance problems [Bak95, LPM+97, BYM+98,
FR99, LLM06]. Furthermore, this result is in line with prior work on clone detection
that conjectures that 5% to 15% of large software projects are clones, i.e., replicated
code fragments [Bak95, LPM+97, BYM+98].
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Misuse of Wildcards

wildcards are

used for single

join points

A further observation of our study is that the programmers of the analyzed AspectJ
programs used wildcards to match sets of join points (homogeneous crosscuts). We
discovered that sometimes these wildcard-based pointcuts do not match multiple join
points, but each pointcut matches exactly one join point (heterogeneous crosscuts). It
follows that identifying wildcards in pointcut expressions of an AspectJ program does not
indicate how many homogeneous crosscuts were implemented because they may match
single join points only. We suspect two possible reasons for this: (1) the programmers
anticipated features to be added subsequently to the programs, or (2) they used wildcard
because they are a ‘convenient’ way to save time and coding effort.

Regarding the second alternative it remains to note that this programming style may
come at a high price [Ale03]. Programmers may get lost easily when adding new features
because it may be hard to figure out whether all the pointcuts of the program affect the
correct sets of join points after this change [LHBL06].

8.6 Related Work

There is some related work on a quantification of the use of AOP via code metrics.

Zhang and Jacobson use a set of object-oriented metrics to quantify the program com-
plexity reduction when applying AOP to middleware systems [ZJ03, ZJ04]. They show
that refactoring a middleware system (23 KLOC code base) into aspects reduces the
complexity (quantified by McCabe’s cyclomatic complexity) and results in a code reduc-
tion of 2% – 3%, which is in line with our results.

Garcia et al. analyzed and compared several aspect-oriented programs (4 KLOC – 7
KLOC code bases) and their object-oriented counterparts [GSF+05, KSG+06]. They
observe that the aspect-oriented variants exhibited superior stability and reusability
through the changes, as it has resulted in fewer lines of code (12% code reduction), etc.

Benn et al. apply the metrics of Garcia et al. to a distributed computing application
(0.7 KLOC code base) [BCP+05]. They observe a code reduction of 11% of the aspect-
refactored variant compared to an OOP equivalent.

Zhao and Xu propose several metrics for aspect cohesion based on aspect dependency
graphs [ZX04]. Ceccato and Tonella propose metrics for measuring the coupling degree
between program elements [CT04]. To our knowledge, they did not evaluate their metrics
by a case study. Gelinas et al. discuss previous work on cohesion metrics and propose a
novel approach based on dependencies between aspect members [GBB06]. They evaluate
different metrics by three small-sized and medium-sized case studies (< 7 KLOC).
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All of the above proposals and case studies take neither the structure of crosscutting
concerns nor the difference between collaborations and other concerns into account.

Lopez-Herrejon and the author propose a set of code metrics for analyzing the cross-
cutting structure of aspect-based product line features [LHA07]. However, this work
focuses exclusively on homogeneous and heterogeneous crosscutting concerns. It does
not consider elementary crosscuts but analyzes crosscutting properties of entire features,
which may have a substantial size. This way, the crosscutting structure of a feature can
be homogeneous, heterogeneous, or any value in between the spectrum of both. We ap-
plied these metrics to a large-scale case study (200 KLOC) and observed that virtually
every feature was predominantly heterogeneous.

8.7 Summary and Perspective

What fraction

of aspects

implements

collabora-

tions?

The motivation for our study was to determine the fraction of aspects that have been used
to implement collaborations. The background is that there are two classes of modular-
ization mechanisms for crosscutting concerns: (1) collaboration abstraction mechanisms
and (2) aspect-oriented mechanisms. Due to the missing support for collaborations in
contemporary mainstream programming languages, aspects are frequently used to im-
plement collaborations, which we identified as one category of crosscutting concerns
(cf. Chapter 3). However, with the advent of collaboration abstraction mechanisms
(e.g., classboxes, nested inheritance, virtual classes, delegation layers, AFMs) it stands
to question how many of these aspects implement collaborations, and how many are
used for alternative use cases beyond collaborations, i.e., homogeneous and advanced
dynamic crosscuts.

2% of the

code bases is

associated to

advanced

AOP

To address this issue we analyzed a set of AspectJ programs available publicly, which
range from small-sized and medium-sized (1 KLOC – 6 KLOC) to large-sized AspectJ
programs (20 KLOC – 120 KLOC). We found that in these programs on average 2% of
the code bases is associated with advanced AOP; 98% is associated with collaborations
and OOP. This result is in line with our experience and the experience of others, who
distiguish between aspects and collaborations [LH06, LHB06].

AOP vs.

advanced

AOP

It is worth noting that the fraction of 2% is in contrast to the real use of AOP mechanisms
in the analyzed programs, which is on average 15%. This result leads us to conclude
that, given an appropriate support of implementing and composing collaborations, col-
laboration abstraction mechanisms can replace traditional aspects to a significant extent
in contemporary aspect-oriented programs. That is, 13% of the code base of the ana-
lyzed AspectJ programs is associated with aspects that implement collaborations and
that should be implemented using languages that support collaborations.
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impact of

program size

Furthermore, we revealed an inversely proportional correlation between program size and
the impact of advanced AOP. This is remarkable since we expected a constant percentage
of advanced AOP code without any dependence on the program size. Though we have
no definitive answer for why this is the case, we have three possible suggestions, which
largely build on the fact that the increasing complexity in large-sized program prevents
programmers to discover or to implement aspects that are not collaborations. In any
case, we conjecture that a fraction of around 5% is a typical upper limit for the use of
advanced AOP.

use cases for

AOP

Nevertheless, AOP should not be avoided completely. In this dissertation, we condensed
two reasons why one should use AOP: (1) when modularizing homogeneous crosscut-
ting concerns a code reduction can be achieved (on average 4% in our analysis) and
(2) advanced dynamic crosscuts can be expressed more intuitively, at a higher level of
abstraction (on average 1% of the code bases in our analysis). Our analysis of AspectJ
programs supports our belief that AFM are an appropriate approach to implement such
software projects because they integrate collaboration-based design and AOP, which are
both necessary for certain design and implementation problems.

misuse of

wildcards

Finally, our study revealed that sometimes the powerful AOP mechanisms, i.e., wildcards
in pointcut expressions were used without any benefit. It has been argued that this may
lead to serious problems regarding reliability and evolvability [LHBL06, Ale03]. We
argue that our programming guidelines help avoiding such misuse of AOP since they
point programmers to this problem and assist them to choose the right technique for the
right problem.
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CHAPTER 9

Concluding Remarks and Further Work

problem areaThe principles of separation of concerns and modularity aim at solving problems associ-
ated with the software crisis, i.e., canceled projects, projects running over-time, projects
running over-budget, etc. Though in the recent years significant progress has been made,
the current situation in software development is far from adequate. According to the
most recent Standish Group report, only 34% of all software projects are successful.

aim of the

dissertation

This dissertation aspires to contribute to this line of research by analyzing, explaining,
combining, and devising conceptual, methodical, practical, and tool-related means to
improve separation of concerns and modularity in software. Specifically, we focus on
two programming paradigms, FOP and AOP that have been discussed intensively in the
literature. This dissertation can be understood as a historical survey of the author’s work
on FOP and AOP, their evaluation, comparison, combination, analysis, and discussion.
The structure of the dissertation reflects, beside the chronology of work on this topic,
also the evolution of the author’s understanding of FOP, AOP, and their relationship.

9.1 Summary of the Dissertation

Chapter 3We presented in Chapter 3 a classification of crosscutting concerns, which are the main
design and implementation problems addressed by FOP and AOP. This classification is
crucial to a systematic discussion about separation and modularization of crosscutting
concerns. It is a prerequisite for an evaluation and comparison of FOP and AOP.

Chapter 4The evaluation in Chapter 4 revealed that FOP and AOP are not competing approaches
and that their combination can overcome their individual limitations. The strengths
and weaknesses of FOP and AOP are expressed in programming guidelines that assist
programmers to choose the right implementation technique for the right problem.
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Chapter 5 In Chapter 5 we presented an approach for the combination of FOP and AOP. The
symbiosis of FOP and AOP incorporates the strengths of FOP and AOP into one uni-
form approach, which we call aspectual mixin layers (AFMs). AFMs provide a way of
designing and implementing programs incrementally; they combine aspect-oriented and
feature-oriented programming mechanisms; and they are language-independent. Addi-
tionally, we provide tool support for Java/AspectJ and C++/AspectC++. The assess-
ment of AFMs is driven by our evaluation criteria and programming guidelines that
demonstrate the successful symbiosis of FOP and AOP, i.e., AFMs profit largely from
the strengths of FOP and AOP.

Chapter 6 Given the integration of feature modules and aspects, we addressed in Chapter 6 the
issue of whether and how aspect-oriented mechanisms fit the stepwise development style
of FOP. We observed that current AOP language mechanisms are not adequate and pro-
posed the integration of aspects and a set of accompanying language mechanisms, which
we call aspect refinement (AR). AR unifies classes and aspects with respect to stepwise
development. According to this view, aspects are just another software artifact that can
be subject of subsequent refinement, which satisfies the principle of uniformity [BSR04].

Chapter 7 In Chapter 7 we presented and discussed the results of applying the notions of AFMs
and AR to a non-trivial, medium-sized software project. In this study we implemented
14 of 113 features as AFMs; 8 aspects were refined using AR. This demonstrates the
practical applicability of AFMs and AR. An interesting insight gained in this study is
that aspect-oriented (advice and inter-type declarations) and feature-oriented (collab-
orations) mechanisms are not used to the same extent. We found that the dominant
role of features is the introduction of new functionality (77% of the code base) and the
extension of methods (17% of the code base). Only 6% of the code base represents
aspect-oriented mechanisms.

Chapter 8 In Chapter 8 we examined the disproportion of code related to FOP and AOP noted
in our case study. We derived from our experience a problem statement: What is the
current practice of using AOP and FOP-related mechanisms? The background is that
we noticed a confusion about the relationship of crosscutting concerns and collabora-
tions, which was revealed and resolved by this dissertation. Due to the long-standing
missing support of collaborations in main stream programming languages, AOP filled a
vacuum, i.e., aspects were used for implementing collaborations. But, with the advent of
languages, tools, methods, and formalisms that support collaborations, aspects should
be avoided in these situations.

The questions that arise are: How many aspects implement collaborations and how
many solve problems beyond collaborations, i.e., homogeneous and advanced dynamic
crosscuts. To answer these questions, we defined in Chapter 8 a set of code metrics
and applied them with tools we provide to 8 AspectJ programs of different size. We
found that on average 2% of the code base of the analyzed programs represents ad-
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vanced AOP and 98% represents collaborations. We noted that the impact of AOP
decreases as the program size increases, i.e., in small-sized and medium-sized programs
we found 3% of the code base associated with advanced AOP and in large-sized pro-
gram only 0.2%. Furthermore, we observed that, despite the marginal use, advanced
AOP mechanisms reduced code replication by on average 4%. Also here we found that
the benefit of code reduction decreases as the program size increases, i.e., 7% in small-
sized and medium-sized programs and 0.3% in large-sized programs. We summarize our
suspicions regarding this phenomenon in the following sections.

9.2 Contributions and Perspective

impact of

AFMs and AR

The contribution of this dissertation is twofold. First, we evaluated, compared, and
combined FOP and AOP to overcome their individual limitations. This resulted in the
notions of AFM and AR. However, our work on AFMs and AR contributes not only a
design method, language and tool support but also helps in understanding the relation-
ship of aspects and feature modules. FOP and AOP are not competing programming
paradigms, but merely decompose software in different ways so that their combination
leads to a better program design. Our programming guidelines assist not only program-
mers but sensitize them to the issues discussed in the dissertation. The tools we provide
enable other researchers to make their own investigations in AFMs and AR. Finally, our
case study demonstrated the practical applicability of AFMs and AR and it pointed to
a further fundamental question: What is the current practice of AOP and how many
aspects implement collaborations?

advanced

AOP is rarely

used

Answering this question is the second contribution of this dissertation. Especially, that
advanced AOP is rarely used and that its impact even decreases at larger scales are
interesting observations. While we expected the fraction of advanced AOP to be around
5%, we did not expect that the fraction decreases as the program size increases. We
have several intuitive explanations that roughly boil down to the sheer complexity that
either prevents the programmer to discover aspects or makes implementation problems
so complicated that they cannot be modularized well using advanced AOP.

clone

detection

An interesting, related branch of research might provide more satisfying answers. Work
on clone detection suggests that 5% – 15% of the code base of a program is associated
with code clones [Bak95, LPM+97, BYM+98], which are in fact a kind of homogeneous
crosscutting concerns. It is known that clones are hard to discover and to avoid and that
tool support is necessary. Using clone detection tools we could explore whether there
are use cases of aspects additionally to the ones found by hand. So the upper limit for
the percentage of code clones could be similar to the upper limit for the percentage of
advanced AOP (5% – 15%).
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advanced

clones

However, the clone detection community considers also parameterized clones and clones
that are equal in parts, which we call advanced clones. Possibly, advanced clones can-
not be modularized using AOP mechanisms, i.e., homogeneous advice and inter-type
declarations. This may be because a part or even only a pattern is equal in all clones
and AOP does not provide appropriate language mechanisms to express the common-
alities and variabilities of the clones. Thus, the 5% – 15% estimation might be too
optimistic. Personally, the author estimates that approximately 5% of a program code
base is associated with advanced AOP.

9.3 Suggestions for Further Work

According to the two main clusters of contributions of this dissertation, we see two
clusters of suggestions for further work: (1) FOP and AOP, (2) aspects vs. collaborations.

Further Work on FOP and AOP

quantification

and functional

aspects

Regarding the symbiosis of FOP and AOP, we suggest to explore further their relation-
ship at the design and the language level. It is interesting to know how the global quan-
tification of aspects affects or even hinders the incremental development style of FOP.
Although touched in this dissertation (cf. Sec. 5.6 and 6.4), we omitted an in-depth
investigation. In a ongoing branch of work we address this issue [ALS05, AL06, KAS06].

What is

essential?

Another interesting issue is how to strip down the integrated approach of FOP and
AOP to provide a minimal set of abstractions and language mechanisms. The question
is: What is essential and how can we develop a consistent design method, language, and
tool suite? Several researchers made already first steps into this direction [LHBC05,
LHBL06, Hut06]

features and

genericity

A further interesting line of research arises from the implementation of AFMs with
FeatureC++. Similar to C++, FeatureC++ provides a template mechanism for generic
programming. This poses the question of when to use generics and when to use feature
modules to make a program customizable. The background is that both techniques
support the implementation of customizable and reusable code. We observed that the
combination of generics and feature modules improves customizability and reusability in
SPLs since they act at different scales [AKL06]. While feature modules are the building
blocks of an SPL, generics enable feature modules to be adapted to specific needs. We call
the combination generic feature modules and it is implemented in FeatureC++ [AKL06].
It would be interesting to explore the impact of genericity on non-standard FOP/AOP
mechanisms like AFMs and AR.

124



9.3 Suggestions for Further Work

refactoringWhile this dissertation targets the principal differences and commonalities of FOP and
AOP in software development, others explored their benefit on refactoring. It will
be interesting to revisit work on aspect-oriented refactoring (AOR) [HMK05, CB05,
MF05, CC04, ZJ04, GJ05, CK03, LST+06, BCP+05] and feature-oriented refactoring
(FOR) [LHBL06, TBD06, LH06, LHB06, XMEH04] by taking the results and experi-
ences of this dissertation into account.

Further Work on Aspects vs. Collaborations

automatic

clone

detection

The most remarkable result of this dissertation is probably that, in the analyzed AspectJ
programs, only 2% of the code base is associated with advanced AOP and 98% with
collaborations. Moreover, the impact of AOP decreases as the program size increases.
We suggest that clone detection tools may help to find out whether this proportion
should be expected generally or whether either programmers or AOP languages today
are simply not capable of exploiting the advantages of AOP. Consequently, it is promising
to evaluate several clone detection methods and tools and their use for quantifying the
impact of AOP compared to collaborations and OOP. Taking the existence of advanced
clones into account, we conjecture that approximately 5% of the code base may be
associated with advanced AOP and 95% with collaborations. Due to the multiplicity
and diversity of clone detection approaches, this attempt is a non-trivial endeavor and
part of further work.

empirical and

comparative

studies

Finally, it is interesting to compare different collaboration abstraction mechanisms and
programming languages and to reimplement aspect-oriented programs by replacing as-
pects that implement collaborations. The AspectJ programs analyzed here qualify as a
starting point. Empirical studies on the aspect-oriented and collaboration-based vari-
ants can quantify their performance with respect to understandability, maintainability,
reusability, and customizability, etc. A point that is not stressed in this dissertation is the
impact of the cognitive distance between programmer and program that depends clearly
on the used programming paradigm and its mechanisms. Further empirical studies will
have to shed light on this issue.
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